

Richtlinie Luftdichtheit bei Minergie-Bauten (RiLuMi)

Version 2020.1

5. Februar 2020

Dank:
Ein Dank gilt allen Autoren und Teilnehmenden der Vernehmlassungen für die wertvollen Inputs.
Zudem wird allen Firmen gedankt, die Bildmaterial und Planunterlagen zur Verfügung gestellt haben.
Diese Richtlinie wurde in Zusammenarbeit mit dem Thermografie- und Blower-Door Verband Schweiz (theCH) erstellt und durch diesen auch finanziell unterstützt.
Copyright © beim Verein Minergie / Thermografie- und Blower-Door Verband Schweiz
Autoren: Gregor Notter, Hochschule Luzern – Technik & Architektur / Minergie Schweiz Michael Wehrli, Vorstand Thermografie- und Blower-Door Verband Schweiz (theCH)
Titalbild.

Quelle: Hochschule Luzern – Technik & Architektur; Foto 12.12.2014

Minergie Schweiz Geschäftsstelle Bäumleingasse 22 4051 Basel T 061 205 25 50 info@minergie.ch www.minergie.ch

Inhalt

1	Einlei	itung	2
	1.1	Vorgeschichte	2
	1.2	Warum die Luftdichtheit wichtig ist	2
	1.3	Wichtigste Änderungen in Kürze	2
	1.4	Relevante Kapitel für die am Bau Beteiligten	3
2	Doku	mente und Begriffe	4
	2.1	Mitgeltende Dokumente	4
	2.2	Begriffe	4
3	Anfor	derung Minergie	6
	3.1	Einzuhaltende Vorgaben	6
	3.2	Gesamt-Messunsicherheit	7
	3.3	Weitere spezifische Grenzwertanforderungen	8
4	Luftdi	ichtheitskonzept	12
	4.1	Nachweismöglichkeiten bei Minergie	12
	4.2	Anforderungen an ein Luftdichtheitskonzept	12
	4.3	Luftdichtheitskonzept im Wohnungsbau	14
	4.4	Luftdichtheitskonzept bei Zweckbauten	16
	4.5	Umgang mit kritischen Bauteilen	17
	4.6	Bauteilübergänge / Durchdringungen	19
5	Luftdi	ichtheits-Messkonzept	21
	5.1	Anzahl und Auswahl der Messzonen bei Wohnbauten	21
	5.2	Bestimmung der Messzonen bei Zweckbauten	24
	5.3	Bestimmung der Messzonen bei Erweiterungen und	
		Umnutzungen	25
6	Luftdi	ichtheitsmessung	28
	6.1	Voraussetzungen für eine Messung	30
	6.2	Gebäudepräparation	30
	6.3	Provisorische Abdichtungen	31
	6.4	Leckageortung / vorausgehende Prüfung	33
	6.5	Messung	34
	6.6	Anforderungen an die Messreihe	35
	6.7	Qualität der Messreihen	36
	6.8	Datenauswertung	36
7	Mess	bericht zur Luftdichtheitsmessung	38
	7.1	Anforderungen an den Messbericht	38
8	Anha	ng	39
	8.1	Hilfsmittel für jede Bauphase	39
	8.2	Norm SIA 180 [1]	39
	8.3	Weitere Messmethoden	41
	8.4	Provisorische Abdichtungen bei Lüftungsanlagen	43
	8.5	Grosse Gebäude	44
	8.6	Weitere Literatur	46

1 Einleitung

1.1 Vorgeschichte

Dieses Dokument richtet sich an alle am Bau Beteiligten (Bauherrschaften, Planende, Bauleitende, teilweise Ausführende, etc.). Die Zielgruppe ist damit deutlich umfassender als frühere Ausgaben der RiLuMi, welche primär auf die Messenden fokussierten.

Die Luftdichtheit war bis anhin nur bei Minergie-P und Minergie-A eine Anforderung, deren Erfüllung messtechnisch nachgewiesen werden musste. Im Jahre 2007 hat der Verein Minergie die "Richtlinie für Luftdichtheitsmessungen bei Minergie-Bauten" herausgegeben. Seit Einführung der RiLuMi 2007 wurden einige kleine Anpassungen vorgenommen und es wurden verschiedene internationale und nationale Normen sowie Richtlinien angepasst. Mit der Einführung der neuen Anforderungen "Minergie 2017" und dem Erscheinen der Norm SN EN ISO 9972 [2] wurde entschieden, die Richtlinie umfassend zu überarbeiten und die Inhalte auf die Bedürfnisse der Planenden und Messenden zu erweitern.

1.2 Warum die Luftdichtheit wichtig ist

Insbesondere aus folgenden Gründen soll ein Gebäude möglichst luftdicht ausgeführt werden:

- Gewährleistung von Bauschadenfreiheit
- Sicherstellung einer hohen Behaglichkeit (z.B. vermeiden von Zugluft, Geruchsübertragungen, Schall, Feuchte)
- Vermeidung von Infiltrationen
- Minimierung von Wärmeverlusten

1.3 Wichtigste Änderungen in Kürze

Die wichtigsten Änderungen gegenüber der Richtlinie von 2007 sind:

- Das Luftdichtheitskonzept wird beim Minergie-Basisstandard neu bereits mit dem Antrag eingefordert.
- Es werden Hinweise zum Messkonzept und zu den Messungen bei Zweckbauten (Nicht-Wohnbauten) gegeben.
- Es werden die Anforderungen und Bezeichnungen der Norm SN EN ISO 9972
 [2] übernommen. Ein auszugsweiser Vergleich zur bisherigen Praxis ist in nachfolgender Tabelle 1 aufgeführt.
- Anpassung verschiedener Punkte bei der Messung, wie z. B. Grenzwerte, verschärfte Messanforderungen, etc.

Wichtigste normative Änderungen

Was	RiLuMi <mark>ab</mark> 2018	RiLuMi 2007
Norm	SN EN ISO 9972 [2]	EN 13829 [3]
Verfahren	In Anlehnung an Verfahren 2 *)	Verfahren B
Luftdurchlässigkeit bei der Bezugsdruckdifferenz 50 Pa	q _{E50} ; m ³ /(h*m ²)	$n_{50,si}$; h^{-1} resp. q_{50} / q_{a50} ; m^3 /(h^*m^2)
*) siehe Tabelle 8, Gebäudepräparation		

Tabelle 1: Übersicht zu den wichtigsten normativen Änderungen zwischen RiLuMi ab 2018 und RiLuMi 2007

Weitere Änderungen und der Vergleich der Symbole mit anderen Normen sind in Tabelle 4 aufgeführt.

1.4 Relevante Kapitel für die am Bau Beteiligten

Die nachfolgende Tabelle 2 gibt einen Überblick, welche Kapitel für die verschiedenen am Bau Beteiligten relevant sind.

Wer	Kapitel			
Bauherrschaft	2 und 3			
Planende	2, 3, 4 und 8			
Ausführende / Bauleitende	2, 3 , 4, 5 und 8			
Messende	2, 3, 4, 5, 6, 7 und 8			

Tabelle 2: Übersicht der relevanten Kapitel für die am Bau Beteiligten.

2 Dokumente und Begriffe

2.1 Mitgeltende Dokumente

Die folgenden Normen und Richtlinien gelten ergänzend zu dieser Richtlinie. Die Kenntnis der übergeordneten Norm SIA 180 [1] und Norm SN EN ISO 9972 [2] wird vorausgesetzt.

Übersicht mitgeltende Normen und Dokumente

Norm / Dokument		Aktuelle Version	Gültigkeitsbereich		
SN EN ISO 9972	[2]	09/2015	Weltweit		
EN 13829	[3]	11/2000	Vom SIA zurückgezogen		
SIA 180	[1]	07/2014	Schweiz		
Nutzungsreglement Minergie	[4]	2020.1	Schweiz		
Produktereglement Minergie	[5]	2020.1	Schweiz		

Tabelle 3: Übersicht mitgeltende Normen und Dokumente

Weitere Minergie-Vorgaben im Zusammenhang mit der Luftdichtheit sind im Produktreglement zu den Gebäudestandards MINERGIE®/MINERGIE-P®/MINERGIE-A® [5] festgelegt.

2.2 Begriffe

Vergleich Normen

Diese Aufzählung erfasst die wichtigsten Parameter, erhebt aber keinen Anspruch auf Vollständigkeit.

Die Tabelle 4 zeigt einige der wichtigsten Begriffe mit den unterschiedlichen Symbolen, die in den verschiedenen Normen verwendet werden.

In der Richtlinie werden die Symbole der Norm SN EN ISO 9972 [2] verwendet.

Übersicht Begriffe und Symbole nach den Normen SN EN ISO 9972 [2], Norm EN 13829 [3], Norm SIA 180 [1]

Begriff / Bezeichnung	Einheit	Norm SN EN ISO 9972 [2]	Norm EN 13829 [3]	Norm SIA 180 [1]		
Hüllfläche (Definition siehe EN ISO 9972 [2], 6.1.2)	m ²	A _E	A _E	A _{inf}		
Innenvolumen (Definition siehe EN ISO 9972 [2], 6.1.1)	m³	V	V	Vi		
gemessener Volumenstrom	m³/h	q _m	V _m	q v,a,e		
abgelesener Volumenstrom	m³/h	q _r	$\overline{V_r}$			
gemessene Druckdifferenz	Pa	Δp_m	Δp _m			
Bezugsdruckdifferenz	Pa	Δp_r	Δp_r	Δp_r		
Leckagestrom bei der Bezugsdruckdifferenz	m³/h	q _{pr}	V_{pr}	q_{pr}		
Leckagestrom bei 50 Pa	m³/h	q ₅₀	V ₅₀	q ₅₀		
Luftwechselrate bei der Bezugsdruckdifferenz <i>(Volumenbezug!)</i>	h ⁻¹	n _{pr}				
Luftwechselrate bei 50 Pa (Volumenbezug!)	h ⁻¹	n ₅₀ n ₅₀				
Luftdurchlässigkeit bei der Bezugsdruckdifferenz über der Gebäudehülle (Hüllflächenbezug!)	m ³ /(h*m ²)	Q Epr		q _{pr}		
Luftdurchlässigkeit bei der Bezugsdruckdifferenz 50 Pa (Hüllflächenbezug!)	m ³ /(h*m ²)	q E50	q _{E50} q ₅₀			
spezifischer grundflächenbezogener Lecka- gestrom bei der Bezugsdruckdifferenz über der Gebäudehülle	m ³ /(h*m ²)	q _{Fpr} bzw. q _{F50}	q _{wpr} bzw. q _{w50}			
effektive Leckagefläche bei der Bezugsdruckdifferenz	m²	ELA _{pr}				
Strömungskoeffizient	m ³ /(h*Pa ⁿ)	C _{env}	C _{env}			
Leckagekoeffizient	m ³ /(h*Pa ⁿ)	C _L	CL	CL		
Strömungsexponent	-	ⁿ (Exponent)	ⁿ (Exponent)	n (Exponent)		
Bestimmtheitsmass	-					
Gesamtmessunsicherheit	%					

Tabelle 4: Übersicht Begriffe und Symbole nach den Normen SN EN ISO 9972 [2], Norm EN 13829 [3], Norm SIA 180 [1]

3 Anforderung Minergie

3.1 Einzuhaltende Vorgaben

Gemäss Produktreglement zu den Gebäudestandards MINERGIE®/MINERGIE-P®/MINERGIE-A® [5] (Version 2020.1, Kapitel 7) gilt:

Für Bauten im **Minergie-Basisstandard** ist mit dem Antrag ein **Luftdichtheitskonzept** einzureichen. Weiterführende Angaben sind im Kapitel 4, Luftdichtheitskonzept, aufgeführt.

Bei allen Minergie-P- und Minergie-A-Bauten muss mit dem Antrag ein Luftdichtheits-Messkonzept eingereicht werden, wenn es sich um Wohnbauten mit mehr als 5 Nutzungseinheiten oder um Zweckbauten handelt. Weiterführende Angaben sind im Kapitel 5, Luftdichtheits-Messkonzept, aufgeführt.

Bei Minergie-P- und Minergie-A-Bauten müssen zusätzlich Luftdichtheits-Messungen inkl. Leckageortung durchgeführt werden. Bei Minergie-Bauten ist die Messung zur Feststellung der Einhaltung des Grenzwertes fakultativ. Bei allen Minergie-Standards wird eine vorgezogene Messung zur Qualitätssicherung empfohlen. Alternativ ist auch eine Leckageortung nach Fertigstellung der luftdichten Gebäudehülle möglich. Weiterführende Angaben sind im Kapitel 6, Luftdichtheitsmessung, aufgeführt.

Übersicht Konzepte und Messungen

	Minergie	Minergie-P	Minergie-A
Luftdichtheitskonzept	Zwingend einzureichen	Fakultative Einrei- chung *)	Fakultative Einrei- chung *)
Luftdichtheits-Messkonzept	Empfohlen ab 5 Nutz- einheiten **)	Zwingend ab 5 Nutzein- heiten **)	Zwingend ab 5 Nutzein- heiten **)
Luftdichtheits-Messung	Empfohlen	Zwingend	Zwingend

Tabelle 5: Übersicht der einzureichenden Konzepte und der durchzuführenden Messungen

*) Die Norm SIA 180 [1] schreibt die Erstellung eines Luftdichtheitskonzepts vor. Dieses kann fakultativ eingereicht werden, wird aber von der Zertifizierungsstelle nicht geprüft. Jedoch ist eine vorgängige Erstellung des Luftdichtheitskonzepts als Grundlage für die Erarbeitung des Luftdichtheit-Messkonzepts (siehe Kapitel 5) zwingend notwendig.

**) Vergleiche Tabelle 7 respektive Abbildung 13.

Die in der Tabelle 6 aufgeführten Grenzwerte gelten bei Messungen pro Messzone:

- Als Durchschnittswert von Unterdruck und Überdruck
- In Anlehnung an Verfahren 2 (gem. Norm SN EN ISO 9972 [2])

- Als vorgezogene Messung (siehe Kapitel 6.5, lit. a)) oder als Abnahmemessung des fertig erstellten Bauwerks
- Mit einer Gesamt-Messunsicherheit von max. ± 15 % (siehe Kapitel 3.2)
- Mit einer natürlichen Druckdifferenz von max. 5 Pa (gem. Punkt 5.5.5, Norm SN EN ISO 9972 [2])

Einzuhaltende Grenzwerte q_{E50}

Minergie [m³/(h*m²)]		Minergie-P [m³/(h*m²)]	Minergie-A [m³/(h*m²)]		
Anforderung Neubau	≤ 1.2	≤ 0.8	≤ 0.8		
Anforderung Erneuerung	≤ 1.6	≤ 1.6	≤ 1.6		

Tabelle 6: Einzuhaltende Grenzwerte q_{E50} bei Messungen in m³/(h*m²)

Für die Beurteilung, ob der q_{E50} -Grenzwert erfüllt ist, gilt der auf 1 Dezimale gerundete Messwert (Mittelwert aus Unter- und Überdruck).

Beispiel: Ein Messwert $q_{E50} = 0.84 \text{ m}^3/(\text{h}^*\text{m}^2)$ ergibt gerundet $q_{E50} = 0.8 \text{ m}^3/(\text{h}^*\text{m}^2)$, womit der Grenzwert erfüllt ist.

Die Luftwechselraten sind im Messbericht mit 2 Dezimalen anzugeben.

Das Vorgehen beim Nicht-Erreichen des Grenzwertes ist in Kapitel 6.5, lit. b) beschrieben.

Anmerkungen:

- Verbleibende einzelne Leckagen dürfen auch bei erfülltem Grenzwert weder zu Schäden am Gebäude, noch zur Verminderung der Behaglichkeit führen (z. B. Zugluft, Geruch, Schall, Feuchte).
- Auch gute Messergebnisse k\u00f6nnen nicht erkennbare, gegebenenfalls problematische Einzelleckagen sowie verdeckte M\u00e4ngel in der Konstruktion nicht restlos ausschliessen.
- Die Luftdurchlässigkeit kann sich im Verlauf der Zeit verändern.

3.2 Gesamt-Messunsicherheit

Die Gesamtmessunsicherheit wird in der Norm SN EN ISO 9972 [2] zu wenig ausführlich beschrieben. Deshalb hat sich Minergie und der Thermografie- und Blowerdoor-Verband Schweiz entschieden, die Gesamtmessunsicherheit nach dem Nationalen Deutschen Anhang NC.3 zur Norm DIN EN ISO 9972 [16] vom Dezember 2018 zu übernehmen.

Ist ein Messresultat nach Abbildung 1 im Bereich a), b) oder c), so wird die Luftdichtheit als "erfüllt" beurteilt. Ebenso klar ist Fall e), wo die Luftdichtheit nicht erfüllt ist. Für Minergie gelten Resultate aus dem Bereich d) grundsätzlich als "nicht erfüllt". Hier kann jedoch die Zertifizierungsstelle unter Berücksichtigung des Messresultats,

der Gesamtmessunsicherheit, der natürlichen Druckdifferenz, des Strömungsexponenten n und des Bestimmtheitsmasses r² entscheiden, ob sie das Messresultat bezüglich der Grenzwert-Ziele dennoch akzeptiert.

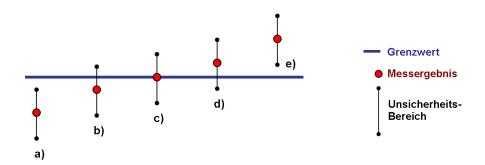


Abbildung 1: Mögliche Lage der Messwerte und derer Unsicherheiten in Bezug auf den Grenzwert

Anmerkungen zur Messunsicherheit:

Die Norm SN EN ISO 9972 [2] schreibt dazu in Kapitel 8.3: "Unter windstillen Bedingungen liegt die Gesamtunsicherheit in den meisten Fällen unter ±10 %. Unter windigen Bedingungen kann die Gesamtunsicherheit ±20 % erreichen."

Ein ungenaues Resultat geht nicht nur aus der Messtechnik / Messunsicherheit hervor. Auch ein unterschiedliches Vorgehen, bzw. Verfahren bei der Gebäudepräparation (z. B. bei den provisorischen Abdichtungen) kann erhebliche Differenzen verursachen, wenn mehrere Messteams das gleiche Objekt messen. Deshalb ist die mit der vorliegenden Richtlinie erfolgte Festsetzung von detaillierten und einheitlichen Mess-Standards wichtig.

3.3 Weitere spezifische Grenzwertanforderungen

- a) Zusatzregelung bei Erneuerungen
 - Wohnbauten: Falls bei Erneuerungen der Grenzwert für einzelne Wohnungen trotz Leckageortung und zumutbarer Mängelbeseitigung nicht eingehalten werden kann (z. B. wegen nicht sanierten, undichten Böden und Decken), genügt die nachgewiesene Erfüllung des Grenzwertes über das gesamte Gebäude. Im Projektblatt zum definitiven Zertifikat wird dann ein Vermerk angefügt, dass die Minergie-Anforderungen nicht wohnungsbezogen erfüllt sind und eine Verminderung der Behaglichkeit bezüglich Geruchs- und Schallübertragung möglich ist.

Bei Gebäuden deren Nutzungseinheiten nur von aussen erschlossen sind, kann nicht die Gebäudehülle über alle Nutzungseinheiten gemessen werden. In diesem Fall sind die definierten Nutzungseinheiten zu messen mit einem Stützdruck in der/den angrenzenden Einheiten. Die thermische Gebäudehülle jeder Nutzungseinheit muss den Grenzwert einhalten. Zusätzlich soll eine

Messung ohne Stützdruck durchgeführt werden um die internen Leckagen zu ermitteln.



Abbildung 2: Grafische Darstellung Messung mit Stützdruck

- Zweckbauten: Hier gilt, soweit es das Bauprojekt zulässt, sinngemäss die gleiche Regelung. Die Entscheidung über das detaillierte Vorgehen und über die
 Festlegung und Beurteilung der Grenzwerte muss im Messkonzept in Absprache mit der Zertifizierungsstelle vereinbart werden.
- Neubauartige Umbauten (z. B. Auskernungen): Der Grenzwert für Neubauten ist einzuhalten. Die Zertifizierungsstelle kann in begründeten Fällen, auf schriftlichen Antrag, abweichende Grenzwerte bewilligen.

b) Erneuerungen mit Erweiterungen

Werden bestehende Bauten erweitert (Anbau, Aufstockung), so wird je nach Gegebenheit die Einhaltung des Grenzwertes für Neubauten, des Grenzwertes für Erneuerung oder die Einhaltung eines objektspezifischen Grenzwertes gefordert. Detaillierte Angaben zu den einzelnen Voraussetzungen siehe Kapitel 5.3, lit. a).

c) Umnutzung

Werden Gebäude umgenutzt, so gilt je nach Raumtemperaturänderung ein unterschiedlicher Grenzwert. Die detaillierten Randbedingungen und einzuhaltenden Grenzwerte sind im Kapitel 5.3, lit. b) beschrieben.

d) Bei Zweckbauten:

Die Zertifizierungsstelle kann bei komplexen Bauten situationsbedingt Ausnahmen von der Einhaltung der Grenzwerte gewähren, solange die Ziele von Minergie gewahrt bleiben.

Werden weitere Prüfmöglichkeiten im Sinne der Minergie Qualitätsüberwachung angeordnet (siehe Kapitel 6.5, lit. a) resp. 8.3, lit. b) bis lit. d)), so sind dort meist keine Grenzwertsetzungen möglich (z.B. thermografische Aufnahmen).

e) Leckageortung

Vor der Messung ist eine sorgfältige Leckageortung durchzuführen. Vorgefundene gravierende Leckagen sind bei Minergie-P und -A im Messbericht zu dokumentieren. Wo sinnvoll und möglich ist eine Mängelbeseitigung durchzuführen Das weitere Vorgehen bei einem Nichterreichen des Grenzwertes sollte vorgängig mit dem Auftraggeber und der Bauleitung geklärt werden. Wird aufgrund der vorgefundenen Ausführung oder schwieriger Detailpunkte eine umfangreichere Leckageortung zur Mängelbeseitigung nötig, sollten die Kosten für eine Weiterführung, vorab in der Offerte mit angegeben werden und falls nötig und möglich vor Ort beauftragt werden (siehe Musterausschreibung des theCH [10]). Beim Entscheid, welche Mängel behoben werden sollen, ist zwischen Aufwand für die Mängelbeseitigung und Schadenspotenzial bzw. Risiko eines Minderkomforts oder Energieverlusts abzuwägen. Siehe dazu: Forschungsbericht Leckagen [8].

f) Befugnis für Auflagen

Zulässig betreffend Leckageortung ist folgendes Vorgehen:

- Werden bei der "vorausgehenden Prüfung" (Leckageortung) Leckagen gefunden, die von den Ausführenden auf Anweisung der Messperson resp. der Bauleitung definitiv, dauerhaft und fachmännisch abgedichtet werden können, so ist das der beste Weg zur Mangelbeseitigung.
- 2) Werden schon bei der "vorausgehenden Prüfung" (Leckageortung) Leckagen gefunden, die nicht abgedichtet werden dürfen / können und die mutmasslich zum Resultat "nicht erfüllt" führen, so muss vor Ort über das weitere Vorgehen entschieden werden. Dabei gibt es zwei Fälle:
 - a) Es werden Leckagen gefunden, die vor der Messung nicht mehr definitiv, dauerhaft und fachmännisch abgedichtet werden können (z.B. undichte Leitungsdurchführungen, undichte Glasleisten, undichte Lüftungskanäle etc.). In diesem Fall macht es Sinn, eine detaillierte (wenn möglich quantifizierte) Leckageortung und Protokollierung durchzuführen, so dass gezielt Nachbesserungen ausgeführt werden können.
 - b) Es werden vermeidbare Leckagen gefunden, die zum Misserfolg der Messung führen (z. B.: Verklemmter Planet-Verschluss, Loch in Glasscheibe (Bauschaden), irgendwo fehlende Dichtungsfugen, etc.). Hier ist es zulässig, dass die Prüfperson für die Messung eine regulär unerlaubte, provisorische Abdichtung anbringt. Dies jedoch nur bei Leckagen, bei denen der Erfolg der Nachbesserung problemlos optisch kontrolliert werden kann. Wird so ein Grenzwert erfüllt, muss bei Minergie keine weitere Nachmessung durchgeführt werden. Dafür wird im Prüfbericht folgende Auflage angefügt:
 - Die nachträgliche Abdichtung muss durch den Unternehmer fachgerecht und dauerhaft in Absprache mit der Prüfperson ausgeführt werden.
 - Die Abdichtung muss nach deren Erstellung durch die Prüfperson optisch kontrolliert werden. Auch ein Fotobeweis seitens Bauleitung ist zulässig.
 - Die Kontrolle ist im Prüfbericht zu dokumentieren oder spätestens vor der Erteilung des definitiven Zertifikats der Zertifizierungsstelle nachzureichen.

Die Prüfperson kann auch ohne Überschreitung des Grenzwertes Auflagen zur Nachbesserung erwirken. Dies vor allem dann, wenn sie bei der Leckageortung potenzielle Schadstellen oder mutmassliche Komforteinschränkungen aufspürt, deren Beseitigung notwendig sind (vgl. dazu "Anmerkungen" bei den Grenzwerten in Tabelle 6).

Wird bei einer ersten Messung der Grenzwert überschritten, so muss die Messung nach Nachbesserungen wiederholt werden. Überschreitet auch die zweite Messung den Grenzwert, so müssen zusätzliche Messungen durchgeführt werden. Das weitere Vorgehen ist in Kapitel 6.5, lit. b) beschrieben.

4 Luftdichtheitskonzept

Das Luftdichtheitskonzept dient dazu, das Thema der Luftdichtung in alle Arbeitsund Nutzungsphasen eines Bauprojekts zu integrieren. Dieser Prozess beginnt bereits mit der Nutzungsvereinbarung mit dem Bauherrn sowie der Definition von Nutzungszonen und ihrer Abgrenzung zur Konkretisierung der Anforderungen. Er endet erst nach Bauabschluss, mit der Einweisung und Nachbetreuung der Nutzer/Bewohner.

4.1 Nachweismöglichkeiten bei Minergie

Für Bauten im Minergie-Basisstandard muss mit dem Antrag das Luftdichtheitskonzept eingereicht werden. Bei Minergie-P und –A ist das Luftdichtheitskonzept nach Norm SIA 180 [1] zu erstellen und kann fakultativ bei der Zertifizierungsstelle eingereicht werden. Dies kann auf zwei Arten erfolgen:

- a) Mit dem Nachweisformular Luftdichtheitskonzept Fragebogen [15], in welchem verschiedene Punkte abgefragt werden, die zu beantworten sind. Es sind dies folgende:
 - o Fragen zu den Nutzungszonen
 - Definition des Luftdichtheitsperimeters
 - Schadstoffabklärungen (Radon)
 - o Besprechung mit den Fachplanenden
 - o Kontrolle auf der Baustelle
 - o Planung der Luftdichtheitsebene
 - Bauteilübergänge
 - o Behandlung von Durchdringungen und An- / Abschlüssen
 - o Etc.
- b) Mit dem Nachweisformular Luftdichtheitskonzept Planzeichnung [11], wie es in Kapitel 4.2, lit. a) beschrieben ist.

Die Dokumente werden von der Zertifizierungsstelle vor der provisorischen Zertifizierung geprüft.

4.2 Anforderungen an ein Luftdichtheitskonzept

Das Luftdichtheitskonzept ist mit dem Stand der Planung nachzuführen und zu konkretisieren. Im Verlauf des Bauprozesses sind somit auch Verantwortlichkeiten, Schnittstellen und Kontrollpläne zur Qualitätssicherung zu definieren.

Voraussetzung für die Erstellung des Konzepts ist das Vorliegen einer Nutzungsvereinbarung mit dem Bauherrn, die u.a. das Festlegen der energetischen Standards, sowie der sich daraus ergebenden Luftdichtheits-Grenzwerte für alle Zonen, sowie die Art der Abgrenzung zwischen diesen Zonen beinhaltet. Dafür müssen Vorgaben der Bauherrschaft vorgängig abgeklärt und gegebenenfalls beraten werden.

Die Anforderungen an die verschiedenen Konzepte nach der Norm SIA 180 [1] sind in Kapitel 8.2 beschrieben.

Das Luftdichtheitskonzept für den Minergie-Basis-Standard muss zum Zeitpunkt des Minergie-Antrags bei der Zertifizierungsstelle mindestens als Grobkonzept (Nachweisformular Planzeichnung [11]) oder in Form des ausgefüllten Fragebogens (Nachweisformular Fragebogen [15]) vorliegen. Auf Basis dieses Grobkonzepts muss anschliessend die nach SIA 180 geforderte, detaillierte Planung der Luftdichtheitsschicht erfolgen.

a) Grobkonzept (Nachweisformular Planzeichnung [11])

Im Grobkonzept sind die nachfolgenden Punkte zu deklarieren:

- Deckblatt:
 - Objektstandort (Anschrift)
 - Auftraggeber
 - Verfasser
 - o Erstellungsdatum und Planungsstand als Ausgangslage
- Vorbemerkungen:
 - o Technische Erläuterungen
 - Vorgaben aus der Nutzungsvereinbarung
- Allgemeine Projektbeschreibung:
 - o Beschaffenheit / Bauweise (bei Bestandsbauten)
 - o Geplanter Standard / Anforderungen / Zielwerte
 - o Relevante Angaben zu Gebäudetechnik
 - Nennung der Hauptverantwortlichen für die Umsetzung des Konzepts
 - Gebäudeschnitt(e) mit Kennzeichnung der luftdichten Ebene als durchgängige farbige Linie sowie entsprechender Kennzeichnung der voraussichtlich kritischen Detailpunkte.
 - Soweit situativ nicht nur die Gebäudehülle von Anforderungen an die Luftdichtheit betroffen ist, hat der Verfasser auch jeweils betroffene Trennwände, Decken und Schächte z.B. zwischen Wohnungen, Nutzungs- oder Klimazonen entsprechend mit einzubeziehen (siehe Kapitel 8.2, Anmerkung 5 zu Tabelle 10).
 - Angaben zu den luftdichten Ebenen in der Fläche (Materialisierung der Regelaufbauten)
 - Auflistung oder Darstellung der beim Projekt relevanten Details mit groben / einfachen Prinzip-Darstellungen (keine detaillierte Fachplanung!) Vorschläge dazu finden sich beispielsweise auf https://www.luftdicht.info/luftdichtheitskonzept.php
 - Bei Zweckbauten und grossen Gebäuden: Benennung der kritischen Bauteile und Festlegung der Anforderungen an ihre Luftdichtheit bzw. Vorgabe der Luftdurchlässigkeitsklassen (siehe Kapitel 8.2 und Kapitel 4.5)
 - Angaben der vorgesehenen Massnahmen zur Qualitätssicherung während der Ausführungsphase (z.B. Baubegehungen, Luftdichtheitsmessungen, etc.)
 - o Allgemeine Hinweise (aus Haftungsgründen):
 - Das Grobkonzept ersetzt keine Ausführungsplanung
 - Hinweis auf die noch erforderliche Fachplanung
 - Fragen der Lüftungsplanung werden im Luftdichtheitskonzept nur im Rahmen der gewollten Durchdringungen der Zonen gestreift und sind nach SIA 180, Absatz 3.2 separat zu planen

b) Planung der Luftdichtheitsschicht im Rahmen der Ausführungsplanung

Die Planung der Luftdichtheitsschicht im Rahmen der Ausführungsplanung baut im nächsten Schritt auf dem Grobkonzept auf und berücksichtigt inzwischen hinzugekommene Planungsänderungen. Sie enthält neben der fortgeführten Kennzeichnung der Luftdichtheitsschicht in den Grundrissen und Schnitten folgende Informationen:

- Auflistung / Darstellung aller relevanten Details mit detaillierter Ausführungsplanung
- Abgleich/ Anpassung des Konzepts in Absprache mit den Fachplanenden für Statik, Wärmeschutz, Feuchteschutz, Schallschutz, Brandschutz, Holzschutz und Luftdichtheit) zur Konkretisierung der Anforderungen
- Festlegung von Schichtaufbauten, Materialien und Ausführung in der Fläche, bei Materialübergängen, bei den An- und Abschlüssen und bei allen zu erwartenden Durchdringungen sowie Abgleich mit den Herstellervorschriften (als Basis für die Ausschreibung/Submission).
- Festlegung der Verantwortlichkeiten bei der Planung, Ausführung und Überwachung/Qualitätssicherung, Definition der Schnittstellen zwischen den Beteiligten.
- Erstellung von Zeitplänen und Festlegung von Reihenfolgen bei der Ausführung und Qualitätssicherung der Luftdichtheitsebenen (Anmerkung: Da die Messung der Luftdurchlässigkeit in der Regel nach Ausführung der wesentlichen Arbeiten, die zur Dichtheit beitragen, durchgeführt werden soll, sind die Bauabläufe soweit möglich daran anzugleichen.

4.3 Luftdichtheitskonzept im Wohnungsbau

Gemäss Kapitel 8.2, Anmerkung 5 zu Tabelle 10, legen die Planenden fest, welche Zonen gegeneinander luftdicht sein müssen. Im Wohnungsbau gibt es diesbezüglich kaum Spielraum.

Wird bei einem Einfamilienhaus die Garage (max. 2 Autoabstellplätze) in den Dämmperimeter integriert und besteht ein Zugang zwischen Wohnteil und Garage, so muss die Luftdichtheitsebene zwischen Wohnteil und Garage verlaufen. Die Türe zur Garage muss luftdicht ausgebildet werden. Ebenfalls soll das Garagentor luftdicht eingebaut werden.

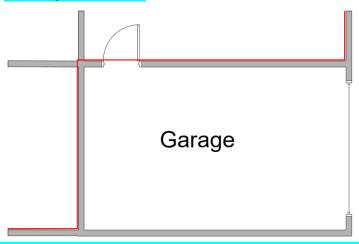


Abbildung 3: Grafik Verlauf der Luftdichtheitsebene (rote Linie) zwischen Wohnteil und Garage bei Einfamilienhäuser.

Wohnungen eines MFH müssen nach den anerkannten Regeln der Baukunst gegeneinander dicht sein. Es sind die Details gemäss Kapitel 8.2, Anmerkung 3 zu Tabelle 10, auszuarbeiten.

Das Gleiche gilt auch für speziell konditionierte Räume (siehe Kapitel 8.2, Anmerkung 6 zu Tabelle 10).

Bei baugleichen Geschossen muss das Luftdichtheitskonzept nur für ein System-Geschoss dargestellt werden. Besteht ein Gebäude z.B. aus einem Erdgeschoss, mehreren davon abweichenden Obergeschossen und einem Attikageschoss, sind für drei Geschosse (Erd-, Ober- und Attikageschoss) Luftdichtheitskonzepte zu erstellen.

Umgang mit kritischen Bauteilen siehe Kapitel 4.5.

Beispiel Wohnbau:

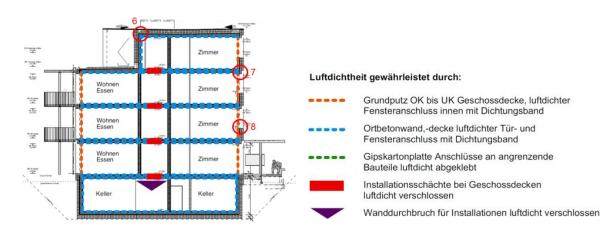


Abbildung 4: Oben: Grundriss mit eingetragenen Massnahmen zur Luftdichtheit. Unten links: Schnitt mit eingetragenen Massnahmen zur Luftdichtheit. Unten rechts: Legende der Massnahmen. Quelle: Minergie-A-Musterantrag

4.4 Luftdichtheitskonzept bei Zweckbauten

Gegenüber Wohnbauten sind bei Zweckbauten und grossen Gebäuden schon in der Projektierungsphase zusätzlich wichtige Entscheide zu treffen.

- Verlauf des Luftdichtheitsperimeters bei Hotelzimmern, Büros oder Gewerbeflächen.
- Abdichtung der Trennwände in Leichtbauweise an die angrenzenden Bauteile.
- Abschottung von Hohlböden und abgehängten Decken, welche an den Luftdichtheitsperimeter der Nachbarzone anschliessen.

Sind bezüglich Dichtheit der unterschiedlichen Nutzungszonen im Zweckbau keine klaren Entscheidungsunterlagen vorhanden, wird eine Festlegung der Messzonen erschwert.

Bei baugleichen Geschossen muss das Luftdichtheitskonzept nur in einem System-Geschoss dargestellt werden.

Beispiel Zweckbau:

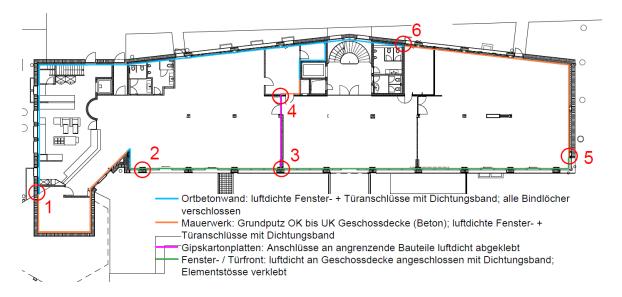


Abbildung 5: Grundriss mit eingetragenen Massnahmen zur Luftdichtheit. Quelle: Planunterlage durch Flumroc AG zu Verfügung gestellt.

Anmerkung zu Brandabschnitten:

Bei Zweckbauten kann es dienlich sein, die grösseren Brandabschnitte als Luftdichtheits- und Messzone zu definieren. Dabei ist jedoch zu berücksichtigen, dass "rauchdicht" nicht gleich luftdicht ist und "Brandschutztore, ohne gesonderte Festlegung durch den Planer, in der Schweiz weder rauch- noch luftdicht sein müssen" (siehe Norm SIA 180 [1], Kapitel 3.6.1.1). Detaillierte Angaben zur Festlegung der Brandabschnitte finden sich in der VKF Brandschutznorm [9] und in den Brandschutzrichtlinien. Umgang mit kritischen Bauteilen siehe Kapitel 4.5.

4.5 Umgang mit kritischen Bauteilen

Der Begriff "kritische Bauteile" (bezüglich Luftleckagen) bezeichnet Bauteile, bei denen technisch bedingt eine vorgängig festzulegende, teilweise hohe Luftdurchlässigkeit zu erwarten ist. Werden in einem Objekt viele solche Bauteile eingesetzt, so kann der Leckagestrom bei der Messung so gross werden, dass es ohne deren Abdichtung nicht mehr möglich ist, strenge Grenzwerte für die Gebäudehülle einzuhalten. (Bsp.: Feuerwehrdepot → beheizte Fahrzeughalle, undichte Rolltore). Solche Bauteile, mit nicht vermeidbarem Leckagestrom, gibt es aber auch bei Wohnbauten.

- a) Beispiele für kritische Bauteile allgemein:
 - o Doppellifttüren (in der Luftdichtheitsebene)
 - Eingänge für Publikumsverkehr (Schiebetüren, Drehtüren mit Bürstendichtungen, etc.)
 - o Rolltore, Schiebetüren, Falttore, Sektionaltore etc.
 - o Rauchschutz-Druckanlage (RDA)

Bei grösseren Nichtwohnbauten sind oft mehrere Rauch- und Wärmeabzugflügel (RWA) eingebaut. Bezüglich der Messung gibt es dabei zwei Problemsituationen.

- Die erhöhte RWA-Leckrate (gegenüber normalen Fenstern) im geschlossenen Zustand wegen den im Rahmen eingebauten technischen Installationen.
- Eine erhöhte Leckrate infolge schlechtem (automatischem) Verschliessen.

Der oft nicht vollständig schliessende Mechanismus ist ein technisches Problem des Unternehmers / Herstellers. Analog undichter Fensterflügel dürfen RWA-Flügel nicht provisorisch abgedichtet werden.

Sind RWA-Flügel geschlossen, so wird deren Leck-Anteil zur Luftdichtheit dazu gezählt. Dies im Wissen, dass sie (meist) nicht so dicht sind wie normale Fenster. Undichte RWA-Flügel führen zu Zuglufterscheinungen und führen zu Behaglichkeitsproblemen.

- b) Beispiele spezifisch bei Wohnbauten
 - Raumluftabhängige Cheminée und Einzelraum-Öfen bei Bestandsbauten, undichte Frischluft- und Rauchklappen.
 - Bei Neubauten gilt direkte Zuführung der Verbrennungsluft zur Feuerung gem. SIA 180, Absatz 3.6.2.1).
 - Katzenklappe
 - Dunstabzughauben (gegen aussen, selbstschliessende Nachströmöffnung gemäss SIA 180, Absatz 3.4.1 vorsehen!)

Für Minergie-Messungen werden die "kritischen Bauteile" gemäss der Beschreibung des Verfahrens 2 (Gebäudehülle) behandelt: "... absichtlich vorhandene Öffnungen werden abgedichtet". Zwar bezieht sich der Grundgedanke dieser Formulierung hauptsächlich auf Lüftungsanlagen und Abluftöffnungen, aber im erweiterten Sinn sind die unvermeidbaren Leckagen der "kritischen Bauteile" als "absichtlich vorhandene Öffnungen" anzusehen.

Damit ergeben sich im Nutzungszustand für spezielle Gebäudetypen konfuse Situationen: Es wird ein hoher Aufwand betrieben für eine dichte Gebäudehülle, aber

gleichzeitig ist klar, dass durch "kritische Bauteile" grosse Lüftungswärmeverluste hingenommen werden müssen (z.B. Publikumseingänge).

Um mehr Wissen bezüglich dieser unbefriedigenden Situation zu erhalten, sollen nach der regulären Messung (mit provisorisch abgedichteten, kritischen Bauteilen), wo möglich die Abdichtungen bei den einzelnen, "kritischen Bauteilen" sukzessive entfernt werden (Ading a hole). Dabei ist bei jedem Bauteil mittels Ein-Punkt-Messung bei 50 Pa Unterdruck (oder Überdruck) der Leckagestrom des Bauteils mittels Differenzbildung zu ermitteln. Damit können abschätzende Vergleiche zu einigen Bauteilnormen erstellt werden (siehe Kapitel 8.6 "Weitere Literatur").

Informativ ist dieses Verfahren auch in der Norm SN EN ISO 9972 [2], Anhang E kurz beschrieben.

4.6 Bauteilübergänge / Durchdringungen

a) Bauteilübergänge

Bauteilübergänge sind im Luftdichtheitskonzept zu beschreiben und zu visualisieren. Beispiele hierfür finden sich auf dem Infoportal zum Thema Luftdichtes Bauen (http://www.luftdicht.info/luftdichtheitskonzept.php), WISSEN Wiki (https://wissenwiki.de/Konstruktionsdetails) oder den Internetseiten der Produktehersteller (Detailzeichnungen). Die Visualisierung eines Boden-Aussenwand-Anschlusses könnte wie folgt aussehen.

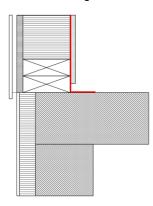


Abbildung 6: Exemplarisches Beispiel Bauteilübergang Boden - Aussenwand

b) Durchdringungen

Alle Installationen, die den Luftdichtheitsperimeter durchstossen, müssen in den Plänen eingetragen werden. Die Abdichtung zwischen dem durchdingenden Bauteil / Installation und dem angrenzenden Bauteil ist zu beschreiben.

Es ist zu beachten, dass Installationsschächte innerhalb resp. ausserhalb des Luftdichtheitsperimeters liegen können.

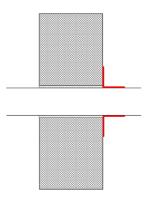


Abbildung 7: Exemplarisches Beispiel Rohr-Durchdringung

In Installationsschächten ist die Brandabschottung konsequent um die Leitungen / Kanäle herumzuführen.

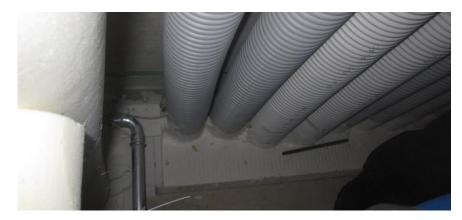


Abbildung 8: Steigschacht mit Installation (Quelle: Hochschule Luzern – Technik & Architektur; Foto: 30.11.2013)

Elektroleitungen sollen zur besseren Abdichtung nicht gebündelt durch den Luftdichtheitsperimeter geführt werden.

Abbildung 9: Nicht geeignet: Gebündelte Elektroinstallationen (Quelle: Hochschule Luzern – Technik & Architektur; Foto: 30.11.2013)

Abbildung 10: Geeignete Mehrfachmaschette für Leerrohre (Quelle: Bild links: pro clima schweiz GmbH; Bild rechts Kel-DPU)

5 Luftdichtheits-Messkonzept

Zusätzlich zum von der Norm SIA 180 [1] vorgegebenen Lüftungskonzept und Luftdichtheitskonzept ist bei Bauten nach Minergie-P und Minergie-A bei folgenden Gebäudekategorien ein Luftdichtheits-Messkonzept zu erstellen:

- Wohnbauten (MFH, REFH) ab 5 Wohneinheiten
- Bei Zweckbauten

Grundlage für das Luftdichtheits-Messkonzept ist das Luftdichtheitskonzept. Ein Luftdichtheits-Messkonzept zeigt die Anzahl und die Lage der Messzonen und begründet deren Auswahl. Dafür sind meist auch erste Absprachen mit den Planenden und der Bauleitung notwendig, denn aus organisatorischen und bautechnischen Gründen können nicht zu jedem Zeitpunkt und an jedem beliebigen Ort Messungen ausgeführt werden.

Das Messkonzept ist zusammen mit dem Minergie-Antrag der Zertifizierungsstelle schriftlich (Papierform oder PDF per Mail) zur Genehmigung einzureichen. Werden Messberichte aus Bauten ohne genehmigtes Messkonzept eingereicht, so können diese von der Zertifizierungsstelle zurückgewiesen werden. Ausnahme: es wurden alle Nutzungseinheiten gemessen.

Wird kein Messkonzept eingereicht, so gehen die Zertifizierungsstellen davon aus, dass alle Nutzungseinheiten gemessen werden. Sofern das Messkonzept nicht mit dem Minergie-Antrag eingereicht wird, sollte dieses bis spätestens 4 Wochen vor Ausführung der Messungen nachgereicht werden. Die Zertifizierungsstellen genehmigen oder korrigieren das Messkonzept. Die Messungen müssen nach dem genehmigten Messkonzept umgesetzt werden. Falls Vorabmessungen vorliegen, ist mit der Zertifizierungsstelle abzusprechen, in wie weit diese akzeptiert werden können.

5.1 Anzahl und Auswahl der Messzonen bei Wohnbauten

Die Norm SIA 180 [1] fordert, dass die Dichtheit sowohl gegen aussen als auch situativ zwischen verschiedenen Nutzungszonen gegeben ist.

a) Bestimmung der Messzone beim EFH

Für alleinstehende Einfamilienhäuser braucht es nach Minergie kein Messkonzept, da die Messzone meist eindeutig ist.

Räume ausserhalb der thermischen Gebäudehülle gehören nicht zum Luftdichtheitsperimeter.

Garagen mit direktem Zugang zur Messzone, welche innerhalb der thermischen Gebäudehülle liegen, müssen luftdicht abgetrennt werden (vergleiche Kap. 4.3). Das Messgerät darf nicht in diesen Zugang eingebaut werden, die Garagentüre muss mitgemessen werden.

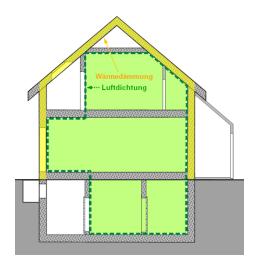


Abbildung 11: Bei älteren EFH ist zu klären, wo der Luftdichtheitsperimeter verläuft.

Bei älteren Gebäuden ist vorgängig zu klären, ob der Luftdichtheitsperimeter vom Wärmedämmperimeter abweicht. Die Norm SN EN ISO 9972 [2] formuliert die Messzone in Kapitel 5.1.2. a) wie folgt:

"Üblicherweise umfasst der gemessene Gebäudeteil alle absichtlich konditionierten Räume (d. h. Räume, die dafür vorgesehen sind, als Ganzes direkt oder indirekt beheizt, gekühlt und/oder belüftet zu werden)."

b) Bestimmung der Messzone bei MFH und Wohnüberbauungen

Grundsätzlich ist jede Nutzungseinheit (= Wohnung) getrennt zu messen. Wohnungen sind auch gegeneinander luftdicht zu erstellen.

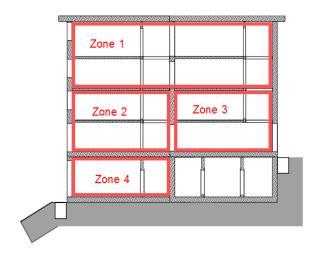


Abbildung 12: MFH mit 4 Nutzungseinheiten. In MFH muss jede Nutzungseinheit (Wohnung, Gemeinschaftsraum, etc.) gegenüber den anderen Nutzungseinheiten luftdicht sein. Dies gilt auch für Treppenhäuser, die aber selten als separate Zone gemessen werden.

Bei grösseren Wohnüberbauungen müssen nicht sämtliche Wohnungen ausgemessen werden, insbesondere nicht, wenn die Grundrisse identisch sind. Systematische

Problemstellen können ohne Messung in allen Wohneinheiten nachgebessert werden. Der folgende Abschnitt zeigt, nach welchem Prinzip die Anzahl Messungen bei Wohnüberbauungen reduziert werden kann.

Hilfestellung für die Bestimmung der Anzahl Messungen bei Wohnbauten / Wohnüberbauungen.

Anzahl Messzonen	1	2	3	4	5	10	15	20	30	40	50	100	200	300
Anzahl Messungen														
Minimal gefordert	1	1	2	2	3	6	7	8	9	10	11	14	18	21
Maximal gefordert	1	2	3	4	5	9	10	11	13	15	16	20	25	29

Tabelle 7: Spannweite der Anzahl Messungen die durchgeführt werden müssen. Zwischenwerte sind zu interpolieren

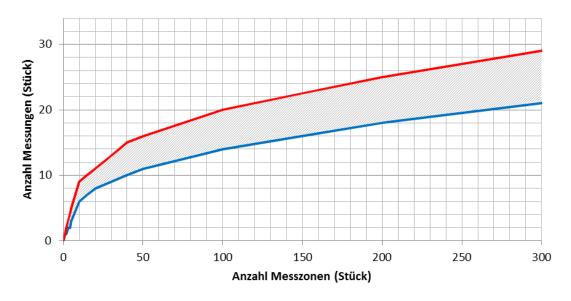


Abbildung 13: Grafische Darstellung der Spannweite der Anzahl Messungen die durchgeführt werden müssen

Die Zertifizierungsstellen können in begründeten Ausnahmefällen von den in der Tabelle 7 resp. Abbildung 13 aufgeführten Angaben abweichen.

Kriterien bei der Messzonen-Auswahl von Wohnbauten

- Es sind möglichst unterschiedliche Wohnungstypen zu berücksichtigen. (Wohnungstyp: Anzahl Zimmer und/oder stark unterschiedliche Grundrisse).
- Es sollen verschiedene Wohnungsexpositionen berücksichtigt werden (unterschiedliche Stockwerke und Himmelsrichtungen).
- Es sind Wohnungen zu bevorzugen mit:
 - o grossen Fassadenflächen
 - viel Flächenanteil gegen andere Nutzungszonen (ausser wenn Betonböden und Betondecken vorhanden sind).
- Es sind Zonen mit unterschiedlichen Konstruktionen und Trennflächen (Wände, Fenster, Decken, etc.) zu berücksichtigen.
- Wohnungen mit "kritischer Lage" sollen höhere Messpriorität haben (Dachgeschosse, Erdgeschosse, Angrenzung zum Lift, etc.).

Hat eine Überbauung mehrere Gebäude, so sollen die Messungen auf diese verteilt werden. Allerdings ist es von Vorteil, dabei den Bauablauf zu berücksichtigen (mehrere Messungen im ersten, messbereiten Objekt durchführen → Erfahrungen auswerten und weitergeben).

5.2 Bestimmung der Messzonen bei Zweckbauten

Welche Zonen bei Zweckbauten (Gebäudekategorien III bis XII der Norm SIA 380/1 [14]) gegeneinander dicht sein müssen, ist dem Luftdichtheitskonzept zu entnehmen.

Bei grossen Zweckbauten (z. B. Verwaltungsgebäude, Spitäler, Schulhäuser, Hallenbäder, Shoppingcenter etc.) ist es aufgrund der Bauabläufe oft nicht praktikabel, eine Luftdichtheitsmessung über ganze Nutzungseinheiten durchzuführen. Bei solchen Bauten können in Absprache mit der Zertifizierungsstelle auch nur einzelne Gebäudeteile gemessen werden.

Innerhalb einer Nutzungseinheit (z.B. Bürotrakt / Produktionshalle) können auch unterschiedliche Zonen (z. B. Raucherräume, Küchen / Restaurants gegenüber angrenzenden Büros) separat gemessen werden.

a) Kriterien bei der Messzonen-Anzahl

Mögliche Messzonen bei Zweckbauten:

- o Wenn möglich: Testmessungen an Mockup / Modellen
- o Ganzes Gebäude
- o Gebäudeteil / Gebäudeflügel
- o Ganze Geschossfläche (noch ohne innere Einbauten)
- Nutzungseinheiten (analog Wohnbauten (Wohnung) jedoch bezogen auf die einzelnen Miet- oder Kaufflächen)
- Unterschiedliche Nutzungszonen innerhalb der Nutzungseinheit (Raucherraum, Küche, Restaurant, etc.)
- Brandabschnitte (sind nur mittels vorgängiger Nutzungsvereinbarung luftdicht auszuführen).

Bei der Auswahl von Fassadenteilen ist folgendes zu beachten:

- Auswahl unterschiedlicher Fassadenkonstruktionen mit möglichst viel Fläche gegen Aussenklima
- o Ecksituationen und Elementstösse
- Bei sehr grossen Bauten: eventuell provisorische Einhausung zu den Fassadenbereichen erstellen.
- o "Kritische Bauteile" (siehe Kapitel 4.5)

b) Weitere Möglichkeiten zur Qualitätssicherung

Bei der Auswahl der Messungen, bzw. bei der Erstellung des Messkonzepts ist die Möglichkeit von weiteren Massnahmen (vergleiche Kapitel 8.3) zur Verbesserung der Qualität der Gebäudehülle zu erwägen.

Für Zweckbauten hat sich folgendes bewährt:

- Ausführliche Leckageortung und Dokumentation (wo möglich mit qualitativer und quantitativer Erfassung).
- Thermografieaufnahmen (aussen / innen; zu beachten: Betriebszustand; beheizt oder unbeheizt; Temperaturdifferenzen zwischen innen und aussen).
- Druckmessungen (natürliche Druckdifferenz auf verschiedenen Höhenlagen im Betriebszustand); je nach Jahreszeit und Betriebsart der Lüftung zeigt sich dabei, wie gross der Stack-Effekt (Kamineffekt) ist und damit die Druckbelastung für die Fassadenkonstruktion.
- Optimierung der Bauabläufe um die Qualitätssicherungen besser in den Bauprozess zu integrieren.
- Abschätzung des sich aus den Mängeln ergebenden Bauschadenspotentials und Empfehlungen zur Mängelbeseitigung.

5.3 Bestimmung der Messzonen bei Erweiterungen und Umnutzungen

a) Erweiterungen

Sind Erweiterungen und bestehendes Gebäude vollständig abgetrennt und allenfalls nur durch eine Öffnung/Tür verbunden, so ist für beide Teile je eine Luftdichtheitsmessung auszuführen.

Unter der Voraussetzung, dass die Trenndecke (vergleiche Abbildung 14) resp. Trennwand (vergleiche Abbildung 15) zwischen Bestand und Erweiterung luftdicht ist, gilt:

Erweiterung (= Neubauten) \Rightarrow Neubauwert q_{E50} \leq 0.8 m³/(h*m²) resp. \leq 1.2 m³/(h*m²) Bestand (= Erneuerung) \Rightarrow Erneuerungswert q_{E50} \leq 1.6 m³/(h*m²).

Die Fläche der Trennwand wird für beide Gebäudeteile jeweils zur Hüllfläche A_E dazugerechnet.

Abbildung 14: Separate Messungen von Erneuerung und Erweiterung als Systemskizze. Z.B. in sich abgeschlossene Aufstockung

Abbildung 15: Separate Messungen von Erneuerung und Erweiterung als Systemskizze. Z.B. in sich abgeschlossener Anbau

Sind eine Erweiterung und das bestehende Gebäude offen verbunden (Zwischendecke mit offener Treppe in die Erweiterung; vergleiche Abbildung 16; resp. ohne Zwischenwand; vergleiche Abbildung 17), oder sind gravierende Undichtheiten in der Zwischenwand zu erwarten, so kann eine Luftdichtheitsmessung für die gesamte Nutzeinheit ausgeführt werden. Der objektspezifische Grenzwert (osGW): ergibt sich dabei aus der nachstehenden Formel:

$$osGW \ q_{E50} = \frac{(A_{E,Altbau} \times 1.6) + (A_{E,Neubau} \times 0.8 \ oder \ 1.2)}{Summe \ A_{E(Altbau+Neubau)}} \left[\text{m}^3/(\text{h}^*\text{m}^2) \right]$$

Dabei entfällt die gemeinsame Verbindungsfläche bei der Ermittlung von A_E, weil <mark>die Nutzungseinheit als eine Messzone</mark> betrachtet wird.

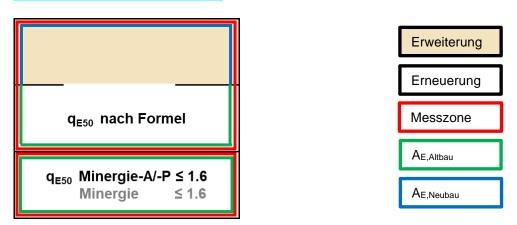


Abbildung 16: "Mischmessung" von Erneuerung und Erweiterung als Systemskizze. Z.B. offene Aufstockung welche direkt mit dem Bestand verbunden ist (offenes Treppenhaus)

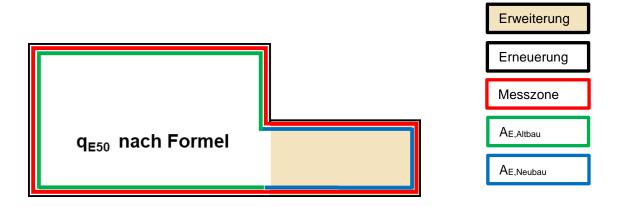


Abbildung 17: "Mischmessung" von Erneuerung und Erweiterung als Systemskizze. Z.B. offener Anbau (z.B. EFH mit Wohnraumerweiterung)

b) Umnutzung

In der Vollzugshilfe EN-106 zu den Mustervorschriften der Kantone im Energiebereich, Ausgabe 2014, werden die energetischen Anforderungen bei Umnutzungen mit Raumtemperaturänderungen definiert. In Analogie zur dieser Vollzughilfe werden hier die Anforderungen an den einzuhaltenden Grenzwert für die Luftdichtheit definiert.

Mit Raumtemperaturänderung

Werden Gebäude oder Gebäudeteile umgenutzt, und ist dies mit einer Erhöhung oder Absenkung der Raumtemperatur (z. B. Kühlräume / -gebäude) verbunden, so müssen folgende q_{E50}-Werte eingehalten werden:

- ≤ 1.6 m³/(h*m²) bei Raumtemperaturänderung ≤ 5 Kelvin (wie die Erneuerungen). Beispiel: Wird ein Lagerhaus in einen Wohnbau (Lofts) umgebaut.
- ≤ 0.8 m³/(h*m²) (Minergie-A/-P) respektive ≤ 1.2 m³/(h*m²) (Minergie) bei Raumtemperaturänderung > 5 Kelvin (wie die Neubauten). Beispiel: Wird ein unbeheizter Stall in einen Wohnbau umgebaut.

Ohne Raumtemperaturänderung

Geschieht die Umnutzung ohne Raumtemperaturänderung (z.B. Verwaltung in Wohnungen), so muss folgender q_{E50}-Wert eingehalten werden:

 \circ ≤ 1.6 m³/(h*m²) (wie bei Erneuerungen)

Spezialfälle

Spezialfälle sind immer vorgängig mit der Zertifizierungsstelle abzusprechen und der massgebliche q_{E50}-Wert zu definieren.

Massgebend für die Beurteilung sind die definierten Raumtemperaturen nach der Norm SIA 380/1 [14].

6 Luftdichtheitsmessung

Sowohl die Norm SN EN ISO 9972 [2] als auch die Norm SIA 180 [1] beinhalten Aussagen zum Messzeitpunkt:

Norm SIA 180 [1], Kapitel 3.6.4.2: "Die Messung der Luftdurchlässigkeit ist bei Neubauten in der Regel als vorgezogene Messung am Ende der Ausbauphase durchzuführen, wenn alle wesentlichen Arbeiten, die zur Dichtheit beitragen, abgeschlossen sind. Sie kann aber auch nach Abschluss der Bauarbeiten oder im Nutzungszustand durchgeführt werden."

Für Minergie-Messungen gilt, wie auch in der Norm SIA 180 [1] definiert, grundsätzlich das Verfahren 2 nach Norm SN EN ISO 9972 [2]. Dabei sind bei einer Messung "alle absichtlich vorhandenen Öffnungen abgedichtet sowie die Türen, Fenster und Falltüren geschlossen". Weitere mögliche Messverfahren siehe Norm SN EN ISO 9972 [2], Kapitel 5.2.1.

Ziel des Verfahrens 2 ist es, Leckagen messtechnisch zu erfassen, die der Messzone zugeordnet werden. Im (nicht erreichbaren) Idealfall müsste ein Messresultat $q_{E50} = 0 \, m^3/(h^*m^2)$ sein. Die Ausnahmen dazu zeigt das folgende Kapitel "kritische Bauteile".

Eine detaillierte Checkliste, wie für diesen Fall mit allen möglichen Öffnungen in der Hüllfläche umzugehen ist, zeigt Tabelle 8 in Kapitel 6.3 resp. Register "Abdichtungen", im Nachweisformular Luftdichtheitsmessung [7].

Die Definition für die massgebende Bezugsgrösse der Hüllfläche lautet für Minergie-Messungen wie folgt (Auszug aus der Norm SN EN ISO 9972 [2], Kapitel 6.1.2):

"Die Hüllfläche A_E des Gebäudes oder des untersuchten Gebäudeteils ist die Gesamtfläche aller Böden, Wände und Decken, die das Innenvolumen umschließen. Wände und Böden unter Erdbodenniveau sind eingeschlossen". Die Innenabmessungen werden in Anlehnung an die Norm SIA 180 [1] und Norm SIA 380 [17] definiert. Vergleiche dazu Abbildung 18 und Abbildung 20.

Die Hüllfläche einer Wohnung in einem mehrstöckigen Gebäude umfasst auch die Böden, Wände und Decken gegen angrenzende Wohnungen. Ebenso gehören bei Doppel- und Reiheneinfamilienhäuser die Gebäudetrennwand / -wände zu deren Hüllfläche. Weitere Details sind der Norm zu entnehmen.

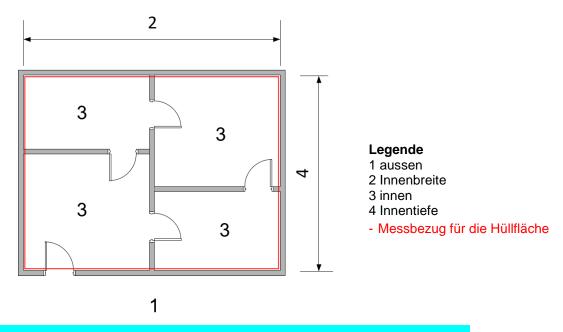
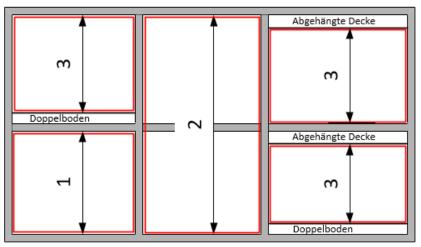



Abbildung 18: Grundriss mit Darstellung der Gesamt-Innenabmessungen (Quelle: SN EN ISO 9972; 2015)

Legende

- 1 lichte Raumhöhe bei Einheit über ein Geschoss
- 2 lichte Raumhöhe bei Einheit über mehrere Geschosse
- 3 lichte Raumhöhe bei Doppelböden und / oder abgehängter Decke
- Messbezug für die Hüllfläche

Abbildung 19: Schnitt mit Darstellung der lichten Raumhöhe

Es ist ratsam, zu Vergleichszwecken (z.B. Verhältnis A_E/V) das Innenvolumen ebenfalls zu ermitteln und allenfalls den n_{50} -Wert auszuweisen. Die Berechnung des Innenvolumens ist in der Norm SN EN ISO 9972 [2], Kapitel 6.1.1 definiert.

6.1 Voraussetzungen für eine Messung

Um eine Messung erfolgreich durchführen zu können, sind folgende Voraussetzungen einzuhalten:

- Die Messgeräte müssen den Anforderungen nach der Norm SN EN ISO 9972 (Druckmessung ± 1 Pa im Bereich von 0 bis 100 Pa; Thermometer ± 0.5 K) entsprechen.
- Das Luftdichtheits-Messkonzept muss von der Zertifizierungsstelle genehmigt sein.
- Die Bezugsgrössen-Berechnungen sind vorhanden und nachvollziehbar erstellt worden.
- Die meteorologischen Voraussetzungen müssen erfüllt sein (max. Messunsicherheit ± 15%, natürliche Druckdifferenz ≤ 5 Pa; Anm.: Bei windigen Verhältnissen werden diese Werte überschritten).
- · Die Absprache mit der Bauleitung ist erfolgt.
- Das Objekt bzw. die Messzone ist bautechnisch bereit.

6.2 Gebäudepräparation

a) Messzonen

Welches die zu messenden Zonen sind, muss frühzeitig im Messkonzept abgeklärt werden! Grundlage für die Bestimmung der Messzonen ist das Luftdichtheitskonzept (siehe dazu Kapitel 5 und Kapitel 8.2).

b) Zustand der Nachbarzonen

Bei Einfamilienhäusern gibt es meist nur eine Messzone. Bei MFH und Zweckbauten sind jedoch fast immer Nachbarzonen vorhanden. Insbesondere in MFH bilden die angrenzenden Wohnungen eine Nachbarzone, die luftdicht abgetrennt werden muss (vgl. Kapitel 8.2). Damit die Trennwände zu diesen Nachbarzonen analog den Aussenwänden geprüft werden können (mit dem gleichen Differenzdruck), sind in allen Nachbarzonen ausserhalb der Messzone die Fenster, Lüftungsflügel etc. zu öffnen, damit möglichst Aussendruck herrscht. Dies gilt wo immer möglich auch für "Pufferräume" wie unbeheizter Keller, Wintergärten, Garagen etc.

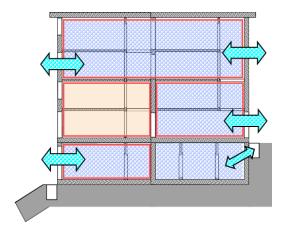


Abbildung 20: Messung einer Nutzungseinheit (Wohnung) in einem Gebäude (MFH). Die Fenster der Nachbarwohnungen, des Treppenhauses und in unbeheizten Nebenräumen sind zu öffnen.

Geöffnete Fenster / Türen in der Nachbarzone können erfahrungsgemäss bei Holzbauten einen merklichen Einfluss auf den Leckagestrom haben. Bei Wohnungen, die durch durchgehende Betondecken / Betonböden getrennt sind, ist eher selten ein Effekt spürbar (Ausnahme: Bei Leckageströmen durch vertikale Leitungsschächte).

Da es nicht immer möglich ist, sämtliche Nachbarzonen im gewünschten Zustand zu haben (z.B. Abwesenheit der Bewohner), ist bei Einschränkungen der Nachströmung der effektive Zustand der Nachbarzonen während der Messung auf jeden Fall im Prüfprotokoll / Bericht festzuhalten.

6.3 Provisorische Abdichtungen

a) Zulässige provisorische Abdichtungen

Für die Messung in Anlehnung an Verfahren 2 dürfen absichtliche Öffnungen im Luftdichtheitsperimeter provisorisch geschlossen werden. Was zulässig ist, ist der nachfolgenden Tabelle 8 zu entnehmen.

Abdichtung	Verfahren 2 (Gebäudehülle)			
Aussentüren *)	schliessen			
Innentüren	offen			
Türen zu beheizten Nebenräumen *) (z.B. Keller)	offen			
Klappen, Luken, Türen zu unbeheizten Gebäudebereichen (Abstellräumen, Keller, Garage) *)	schliessen			
Tür zu Lift / Schacht zu anderer Messzone ***	schliessen			
Tür zu Lift / Schacht zu gleicher Messzone) **)	schliessen und abdichten			
Schlüssellöcher *)	keine			
Luken und Klappen zu Abseiten im DG wenn Luftdichtheitsperimeter aussen	öffnen			
Luken und Klappen zu Abseiten im DG wenn Luftdichtheitsperimeter bei Luke *)	schliessen			
Fenster / Fenstertüren / Dachfenster / *)	schliessen			
Hebeschiebetüren / Festverglasungen etc.				
Lüftungsschlitze in Fenstern (Rahmen)	schliessen, abdichten <mark>und doku- mentieren</mark>			
Lüftungsklappen der Dachfenster	schliessen			
Rollladengurten / Storenkurbeln *)	keine			
Lüftungsaggregat oder Einzelraum-Lüftungsgerät	wo möglich im Gerät abdichten und dokumentieren			
Zuluft der Wohnungslüftung in Räumen	schliessen oder abdichten und dokumentieren			
Abluft der Wohnungslüftung in Räumen	schliessen oder abdichten und dokumentieren			
Dampfabzug der Küche / Umluftsystem	keine			
Dampfabzug der Küche / Fortluftsystem	abdichten und dokumentieren			
Fortluftventilator (Bad / Dusche / WC)	abdichten und dokumentieren			

Wäschetrockner in beheizter Zone mit Abluft nach aussen	Trockner schliessen <mark>und Abluft- rohr z.B. aussen</mark> abdichten
Ofen / Cheminée etc.	schliessen <mark>und abdichten</mark>
Zuluft zu Ofen	schliessen und abdichten
Kamin vom Ofen	schliessen und abdichten
	schliessen
Katzenklappen	schliessen und abdichten
Schachtdeckel in beheizten Zonen	abdichten
Abgehängte Decke und deren Einbauten	keine
Elektrokasten, Sicherungen *)	keine
Steckdosen *)	keine
Einbaulampen *)	keine
	keine
Sanitär Spülkasten WC *)	keine
weitere Sanitäranschlüsse und Durchbrüche *)	keine
Kanalentlüftungsventile in beheizten Zonen	abdichten und dokumentieren
Zentrale Staubsaugeranlage	schliessen und abdichten
Leerrohre zu unbeheizten Zonen	abdichten und dokumentieren
generell bei Rohrdurchbrüchen	rot: keine *) (= Gebäudehülle)
	blau: schliessen, bzw. abdichte
Alles was während der Messung provisorisch abgedichtet wurde is Weiteres:	t zu dokumentieren.

^{*)} Sind hier deutliche Luftleckagen spürbar, so kann deren Anteil durch abdichten mit einer Ein-Punkt-Messung (vgl. Kapitel 8.3, lit. d)) abgeschätzt werden. Für eine MINERGIE/-P/-A® Beurteilung in Anlehnung an Verfahren 2 ist eine provisorische Abdichtung jedoch nicht zulässig!

Tabelle 8: Liste mit den zulässigen provisorischen Abdichtungen

Hinweis: Durch das Entfernen der zulässigen, provisorischen Abdichtungen z.B. bei kritischen Bauteilen, Ofen, etc., kann mittels einer Ein-Punkt-Messung (bei ΔP 50

^{**)} Führt ein Liftschacht direkt in eine Wohnung, so darf die Schachtabschlusstüre nicht provisorisch abgedichtet werden. Die Schachtabschlusstüre gehört zum Luftdichtheitsperimeter und muss dicht ausgeführt werden. Alternativ kann ein zusätzlicher, luftdichter Abschluss vor der Schachtabschlusstüre erstellt werden.

Pa) sehr schnell die Differenz der beiden Verfahren (1 respektive 2) abgeschätzt werden. Damit werden die Leckströme quantifiziert, die nicht der Gebäudehülle zugeordnet werden dürfen.

b) Lüftungsanlagen

Detaillierte Angaben zu den provisorischen Abdichtungen bei den Lüftungsanlagen siehe Kapitel 8.4.

6.4 Leckageortung / vorausgehende Prüfung

Die Bestimmung der Luftdurchlässigkeit ist eine *quantitative Messung*. Ein Messresultat sagt dabei nicht aus, wo denn die noch verbleibenden Leckagen sind. Diese Frage kann mit der *qualitativen Leckageortung* beantwortet werden. Eine Leckageortung ist zwingend notwendig, da nur so Fehlstellen gefunden werden können (insbesondere bei Problem- und Schadenfällen).

Vorausgehende Prüfung:

Die Norm SN EN ISO 9972 [2] beschreibt in Kapitel 5.3.1:

"Die gesamte Gebäudehülle ist immer nahe der höchsten Druckdifferenz, die bei der Prüfung verwendet wird, auf grosse Lecks und auf das Versagen provisorisch abgedichteter Öffnungen zu prüfen. Werden solche Lecks entdeckt, sind sie ausführlich zu beschreiben."

In der Praxis hat es sich bewährt, die vorausgehende Prüfung = "Leckageortung" immer bei folgenden Bedingungen auszuführen:

- Referenzdruck ca. 50 Pa
- Unterdruck

Situativ können auch andere, gegebenenfalls höhere, Druckstufen nützlich sein. Dabei ist von der Prüfperson zu beachten, dass hohe Druckstufen durchaus Zerstörungspotenzial entwickeln können (z.B. Abreissen von noch nicht vollständig, mechanisch gesicherten Dampfbremsen). Die Erfahrung zeigt, dass nur mit immer etwa gleichen Druckdifferenzen die Prüfperson ein sicheres "Beurteilungsmass" für die Relevanz der aufgespürten Leckagen entwickeln kann. Wesentlich ist, dass bei der Dokumentation alle Randbedingungen genau protokolliert werden.

Mittel zur Leckagesuche und Visualisierung (vgl. auch Norm SN EN ISO 9972 [2], Anhang E):

- von Hand mit dem Handrücken oder evtl. mit nassem Finger
- mit Strömungsprüfröhrchen
- mit Raucherzeugern (bei kleinen Leckagen sind jedoch Nebelmaschinen meist ungeeignet)
- mit Anemometer (Messung der Luftgeschwindigkeit vor der Oberfläche mit definiertem Abstand).
- mit Wollfäden
- mit Infrarot-Thermografie (ev. mit Differenzbildern, vergleiche Kapitel 8.3, lit b))
- Theater-Nebel als Rauchprobe und zum Auffinden von unzugänglichen Leckagen

6.5 Messung

a) Die vorgezogene Messung

Eine Luftdurchlässigkeitsmessung kann auch *vor* der Bauvollendung durchgeführt werden. Für eine sog. "vorgezogene Messung" (vgl. Norm SN EN ISO 9972 [2], Kapitel 5.1.3) müssen alle relevanten Arbeiten für die Dichtung der Gebäudehülle bzw. der Dichtung der Messzone abgeschlossen sein. Erfüllt das Ergebnis die Grenzwertanforderung, so wird das Resultat für die Anforderung nach Minergie anerkannt und es muss keine weitere Abnahmemessung nach Bauvollendung durchgeführt werden. Im Messbericht ist der Bauzustand bei der vorgezogenen Messung zu protokollieren und alle provisorischen Abdichtungen sind detailliert zu beschreiben (siehe auch Kapitel 6.3, Tabelle 8, resp. Vorlage "*Abdichtungen*" im Nachweisformular Luftdichtheitsmessung [7]).

Bei einer vorgezogenen Messung kann es vorkommen, dass ein Bauteil noch nicht funktionstüchtig ist oder gar noch fehlt (Wohnungstür, Türe zu unbeheiztem Nebenraum, ausser direkt in den Liftschacht oder in die Garage, defektes Fenster wegen Bauschaden etc.) In solchen Fällen darf ausnahmsweise eine provisorische Abdichtung dafür eingesetzt werden, was jedoch genau zu dokumentieren ist (Foto). Für solche Fälle gilt zudem das Prinzip der Auflage (vgl. Kapitel 3.3, lit. f)): Ein nachträglicher korrekter Einbau ist durch die Prüfperson zu bestätigen. Zu den üblichen Ausnahmen, die nicht nachkontrolliert werden müssen, gehört die Wohnungstür, welche meist erst am Schluss eingesetzt wird, wenn das Minergie-Label bereits vergeben ist.

Eine vorgezogene Messung (mit Leckageortung) ist in der Bauphase sinnvoll und von den Unternehmern erwünscht, da allfällige Leckagen häufig ohne grossen Aufwand nachgebessert werden können. Mit der Fertigstellung des Gebäudes wird vor allem durch Schreiner-, Gipser-, Maler- und Plattenlegerarbeiten die Luftdichtheit eher noch verbessert. Infolge nachträglicher Installationsarbeiten (insbesondere elektrische) oder durch die Montage der *Lüftungsanlage* können aber auch wieder zusätzliche Leckagen geschaffen werden.

Die Bau-Fertigstellung bewirkt somit meist noch eine Veränderung der Luftdurchlässigkeit. Deshalb sind Messresultate aus vorgezogenen Messungen nicht repetierbar und sind besonders gut zu dokumentieren! Nach der Messung stattfindende Arbeiten an der Luftdichtungsebene sind durch die Bauleitung mit Teilabnahmen zu überwachen und dokumentieren, bevor diese durch den Innenausbau nicht mehr zugänglich sind.

Werden nur Teilbereiche bei Zweckbauten gemessen, so kann die Zertifizierungsstelle im Voraus weitere Messungen definieren (vergleiche Kapitel 5.2). Bei diesen Messungen werden keine Grenzwertanforderungen gestellt und sie sind nicht relevant für die Zertifizierung.

Eine ausführliche Beschreibung einzelner Messungen befindet sich im Kapitel 8.3.

b) Nichterreichen des Grenzwertes

Wird bei einer Nutzeinheit in einem Objekt der Grenzwert nach zwei Messversuchen (Messung nach Nachbesserungen an verschiedenen Tagen durchgeführt) nicht erreicht, so muss nebst der vordefinierten Anzahl Messungen eine zusätzliche Nutzeinheit gemessen werden. Halten mehrere Nutzeinheiten nach zwei Messversuchen in einem Objekt den Grenzwert nicht ein, so ist die Anzahl Messungen um die Anzahl der nicht eingehaltenen zu erhöhen. In einer Überbauung mit mehreren Objekten gilt die Regelung pro Objekt.

Die Messenden resp. die Antragstellenden sind verpflichtet, die Zertifizierungsstelle umgehend per Mail oder Telefon zu informieren, wenn eine Nutzeinheit / mehrere Nutzeinheiten nach zwei Messversuchen den Grenzwert nicht einhalten. Gleichzeitig ist ein Vorschlag der zusätzlich zu messenden Nutzeinheit(en) einzureichen und von der Zertifizierungsstelle genehmigen zu lassen. Die Zertifizierungsstelle kann vom Vorschlag abweichend eine Nutzeinheit / mehrere Nutzeinheiten definieren, die zusätzlich zu messen sind.

Zeichnet sich während einer Messung ab, dass der Grenzwert nicht erreicht wird, so ist folgendes Vorgehen empfohlen:

- 1) Kontrolle, ob sich die provisorischen Abdichtungen gelöst haben. Einige Klebeband-Typen (Beton-Klebeband) können sich unter Druck ablösen. Klebemassen müssen getrocknet sein. Luftdichtheits-Klebebänder benötigen eine Abbindezeit, bevor sie die maximale Festigkeit erreichen!
- 2) Prüfen, ob bessere / andere Abdichtungsmethoden bei der Lüftungsanlage und bei den weiteren zulässigen, provisorischen Abdichtungen angewendet werden können (vgl. Kapitel 6.3). Dazu gehört auch die Kontrolle, ob die Blower-Door, einschliesslich Ventilator, allseitig dicht eingebaut ist.

Anmerkung:

In Anlehnung an das Verfahren 2 ist klar geregelt, was abgedichtet werden darf und was nicht (siehe Kapitel 6.3, lit. a)) und was kritische Bauteile sind (Kapitel 4.5).

Dichtet eine Prüfperson provisorisch oder nicht-fachmännisch alle auffindbaren Leckagestellen ab, damit ein Grenzwert noch erreicht wird, so ist das ohne Offenlegung der nicht zulässigen provisorischen Abdichtungen ein grober Verstoss gegen diese Richtlinie und die Normen.

6.6 Anforderungen an die Messreihe

Die Formulierungen zur Erfassung der Messreihe lauten in der Norm SN EN ISO 9972 [2], Kapitel 5.3.4 wie folgt:

"Die Prüfung wird vorgenommen, indem über einen Bereich der erzeugten Druckdifferenzen in Schritten von nicht mehr als etwa 10 Pa Messungen des Volumenstroms und der Druckdifferenz zwischen innen und aussen durchgeführt werden. Für jede Prüfung sind mindestens fünf etwa gleich weit voneinander entfernte Datenpunkte zwischen der kleinsten und der größten Druckdifferenz zu definieren.

Die kleinste Druckdifferenz muss etwa 10 Pa (d.h. mit einer zulässigen Abweichung von ± 3 Pa) oder das Fünffache des Wertes der natürlichen Druckdifferenz (Δ p01) betragen, je nachdem, welcher Wert höher ist.

Die höchste Druckdifferenz muss mindestens 50 Pa betragen; um die höchste Genauigkeit der berechneten Ergebnisse zu erhalten, wird jedoch empfohlen, Ablesungen bei Druckdifferenzen bis zu 100 Pa vorzunehmen." Anmerkung: Die Luftdichtheitsschicht muss die hohen Druckdifferenzen schadlos überstehen.

Bei Abweichungen von dieser Regel sind die Randbedingungen zu beschreiben. Die Plausibilität der Messung und des Resultats ist der Zertifizierungsstelle bei Nachfragen im Bedarfsfall nachzuweisen. Werden bei grossen Gebäuden die oberen Druckstufen (mind. 50 Pa) nicht erreicht, so gilt:

- Wenn die Druckdifferenz < 25 Pa erreicht, so ist die Messung ungültig.
- Wenn die Druckdifferenz zwischen 25 Pa und 50 Pa liegt, ist die Messung gültig.
 Jedoch ist dies im Prüfbericht deutlich zu vermerken und zu begründen.
- Weitere Informationen siehe Norm SN EN ISO 9972 [2], Kapitel 5.3.4.

Werden grosse Gebäude als eine Zone gemessen, so sind spezielle Anforderungen zu beachten. Diese sind in Kapitel 8.5 beschrieben.

In Abweichung zur Norm SN EN ISO 9972 [2], Kapitel 5, gilt für die Messung bei Minergie-Bauten:

- Es müssen zwingend je eine Messreihe bei Unter- und Überdruck ausgeführt werden.
- Es müssen mindestens 5 Messpunkte in etwa gleichmässigen Abständen aufgezeichnet werden. Die Bandbreite zwischen unterstem und oberstem Messpunkt sollte ca. 40 70 Pascal betragen, wobei der Referenzwert (50 Pa) klar innerhalb der Messreihe liegen soll.
- Bei windbedingten Druckschwankungen sollten mehr als 5 Messpunkte (empfohlen mindestens 7) bei höheren Druckdifferenzen (bis ca. 70 Pa) aufgenommen werden um die Genauigkeit der Messwerte zu erhöhen.

6.7 Qualität der Messreihen

Mit der Norm SN EN ISO 9972 [2] werden in Kapitel 6.2 Lücken im Bereich der Qualität der Datenauswertung geschlossen.

Zum Strömungsexponenten n und dem Bestimmtheitsmass r² wird vorgegeben:

"Damit die Prüfergebnisse im Kontext dieser Internationalen Norm gültig sind, muss **n** im Bereich von **0,5 bis 1** liegen und **r**² darf **0,98** nicht unterschreiten."

6.8 Datenauswertung

Für einen nachvollziehbaren Messablauf sind verschiedene Kennwerte zu berechnen und zu deklarieren. Im Normalfall werden diese von der Software der Messanlage geliefert. Details zu den Bezugsgrössen, den Berechnungsformeln und den abgeleiteten Grössen können dem Kapitel 6 der Norm SN EN ISO 9972 [2] entnommen werden.

Die Norm SN EN ISO 9972 bewertet alle Messwerte gleich. Durch das Logarithmieren erhalten Messwerte bei kleinem Druck einen stärkeren Einfluss auf das Ergebnis als Werte bei grossem Druck. Bei Messungen für Minergie werden Druckdifferenzen von ca. 60 Pa bis ca. 70 Pa gefordert. Um den grösseren Drücken mehr Gewicht zu geben sind die Messwerte nach dem Nationalen Deutschen Anhang NC.2 zur Norm DIN EN ISO 9972 [16] vom Dezember 2018 zu bewerten.

7 Messbericht zur Luftdichtheitsmessung

7.1 Anforderungen an den Messbericht

Grundsätzlich hat die Berichterstattung alle Punkte nach der Norm SN EN ISO 9972 [2], Kapitel 7 zu erfüllen. Für die Berichterstattung von Minergie-Messungen gelten noch zusätzliche Forderungen, die nachfolgend beschrieben sind:

Angaben zum Messobjekt und Verfahrensfragen

- Angaben für die Identifizierung des Messobjektes (Adresse, Gebäudetyp, Baujahr, Höhe über Meer, evtl. Fotos)
- Minergie-Standard des Gebäudes
- Wind-Lagefaktor (A, B, C) der Messzone
- Wind, sofern verfügbar: Verlauf am Messtag, ab Meteostation in der Nähe.
- Gesamthöhe der Messzone (Lufthöhe → Stack-Effekt)
- Dokumentation der Messzone (evtl. Fotos) und Angaben zu der / den Bezugsgrösse(n):
- o AE-Berechnungen (inkl. Planunterlagen mit eingetragener Messzone(n))
- Angewendetes Verfahren 1, 2 oder 3 (Vorgabe Norm SIA 180 [1] und Minergie: Verfahren 2)
- falls Verfahren 1 oder 3 (Beschrieb siehe Norm SN EN ISO 9972 [2], Kapitel 5.2.3) angewandt werden soll, ist dies mit detaillierten Angaben für die Gründe vorgängig mit der entsprechenden Zertifizierungsstelle zu besprechen.

Randbedingungen bei der Messung

- Foto und Beschrieb mit Ort und Art der eingebauten Blower-Door w\u00e4hrend der Messung
- · Messdatum und Zeit
- Status:
 - o vorgezogene Messung oder Abnahmemessung
 - o Dokumentation IST-Zustand.
- bestehender Bau / Altbau
- Eine genaue Beschreibung / Liste und / oder Fotos damit erkennbar ist, was, wie, wo provisorisch abgedichtet wurde (beachte Kapitel 6.3). Es kann auch die Checkliste verwendet werden: Register "Abdichtungen", im Nachweisformular Luftdichtheitsmessung [7].
- Beschreibung des Zustandes der Nachbarzonen, sofern nicht sichergestellt ist, dass die Fenster dort geöffnet sind. Ist der Zustand unbekannt (weil vielleicht nicht zugänglich), so ist das im Bericht zu deklarieren.

Weiteres:

Unabhängig davon, ob ein Grenzwert erreicht wurde oder nicht, sind die wichtigsten, aufgefundenen Leckagen ausführlich zu beschreiben und wo möglich mit Fotos zu dokumentieren (Details dazu siehe Kapitel 6.5, lit. b) und [8]). Es wird empfohlen, die *Anmerkungen* zu Tabelle 6 in die Berichterstattung zu integrieren.

8 Anhang

8.1 Hilfsmittel für jede Bauphase

Es steht für jede Bauphase eine Checkliste betreffend Luftdichtheit [6] zur Verfügung. Diese kann unter www.minergie.ch heruntergeladen werden. Als Beispiel wird hier der Teil der Checkliste für die Vorprojektphase gezeigt.

Vorprojektphase¶

н	Zuständig¤	erledigt¤	Bemerkungen¤
Luftdichtheitskonzept·erstellt?¤	o o o o o ¤	aa	oooog
Lüftungskonzept∙erstellt?¤	oooo ¤	ooood	noon p
Luftdichtheits-Messkonzept·notwendig·/·erstellt?¤	u¤	aa	u.o.o.p
Lageder-luftdichten-Hülle-festgelegt?¤	o o o o o p	o o o o o d	u.o.o.a
Durchdringungen der Luftdichtheitseben soweit wie möglichvermeiden!¤	u¤	¤	o.o.o.H
Länge-der-An/-Abschlüsse-der-Luftdichtheitsebene-minimiert?¤	°°°°°¤	aa	oooog
Konzepte-mit-Fachplanern- (Bauphysiker, -HLKSE-und-ECO-Spezialist)-besprochen?¤	g°°°°¤	ooooo ¤	a see a final fina
Luftdichtheits-Messkonzept-notwendig-/-erstellt, planerisch- festgehalten-und-Fachplaner-abgegeben?¤	ua	aa	o.o.o.H
Luftdichtheits-Messkonzept·bei-Zertifizierungsstelle-eingereicht?¤	o o o o o ¤	。。。。。a	oooogi H

Abbildung 21: Auszug aus Checkliste Luftdichtheit [6]

8.2 Norm SIA 180 [1]

Mit der Norm SIA 180: 2014, [1] werden im Bereich Luftdichtheit alle wesentlichen Bezugsgrössen gleich definiert wie in den internationalen Normen. Lediglich bei den Bezeichnungen/Symbolen existieren teilweise noch Unterschiede (Symbolvergleich: Siehe Tabelle 4).

Grenzwerte nach SIA-Norm 180 [1]

Die Norm SIA 180 [1] schreibt folgende Grenz- und Zielwerte vor: (Anmerkung: $q_{a50,li}$ / $q_{a50,ta}$ ist gleichbedeutend wie q_{E50} (nach Norm SN EN ISO 9972, [2])

	Gre	Zielwert	
	Für natürliche Lüftung	Für mechanische Lüftung	generell
	Q _{a50,li}	Q _{a50,li}	q a50,ta
	[m ³ /(h*m ²)]	$[m^3/(h^*m^2)]$	[m ³ /(h*m ²)]
Neubauten	2.4	1.6	0.6
Umbauten, Erneuerungen	3.6	2.4	1.2

Tabelle 9: Grenz- und Zielwerte der Norm SIA 180 [1]

Anmerkungen:

- Zwingend einzuhalten sind die Grenzwerte. Die Zielwerte sind anzustreben.
- Ein weiterer Grenzwert für Trennwände wird in Kapitel 3.3.4 beschrieben: siehe Tabelle 10, Vermerk ⁶⁾

Übersicht Konzepte nach Norm SIA 180 [1]

	Norm SN EN ISO 9972 [2]	Norm SIA 180 [1]	Minergie
Lüftungskonzept 1)	keine	ja, siehe ¹⁾	Ja (Basis: SIA)
	Vorgaben	SIA Kap. 3.2	
Luftdichtheitskonzept ²⁾	keine	ja, siehe	Ja (Basis: SIA)
	Vorgaben	SIA Kap. 3.6.1.6 ³⁾	
		SIA Kap. 3.6.1.5 ⁴⁾	
		SIA Kap. 3.6.1.1 ⁵⁾	
		SIA Kap. 3.3.4 ⁶⁾	
Luftdichtheits-Messkonzept 7)	keine	keine	Ja, wenn Messpflicht
	Vorgaben	Vorgaben	und spez. Bedingungen 7)

Tabelle 10: Übersicht Lüftungs-, Luftdichtheits- und Luftdichtheits-Messkonzept

- Obwohl das Lüftungskonzept nichts mit den Messungen zu tun hat, kann für Analysen von Messresultaten und Gutachten im Bereich der Luftdurchlässigkeit das Kapitel 3.2.5 der Norm SIA 180 [1] eine wesentliche Bedeutung erlangen: "Wird die Lüftung so geplant, dass ausschliesslich die Bewohner durch manuelle Bedienung die Frischluftzufuhr bzw. die Raumluftqualität sicherstellen müssen, so ist dies bereits in der Baudokumentation deutlich zu vermerken und es ist auf mögliche Probleme hinzuweisen."
- ²⁾ **Zum Luftdichtheitskonzept** erläutert die Norm SIA 180 [1] folgendes:
- 3) Kapitel 3.6.1.6: "Die Lage und der Verlauf der Luftdichtung in der Fläche, bei den An- und Abschlüssen sowie bei Durchdringungen müssen im Luftdichtheitskonzept festgelegt werden."
- ⁴⁾ Kapitel 3.6.1.5: "Bei Nicht-Wohnbauten und grossen Gebäuden werden oft sogenannte kritische Bauteile bezüglich Luftleckagen (z.B. Roll-, Schiebe-, Falttore, Karusselltüren, Lifttüren, Rauch- und Wärmeabzugs-Flügel) eingesetzt. Zudem sind Messungen analog den Wohnbauten oft nicht möglich. Die zu erfüllenden Anforderungen und Grenzwerte sind deshalb bei solchen Gebäuden im Luftdichtheitskonzept speziell zu vereinbaren."
- 5) Eine entscheidende Bedeutung bezüglich luftdichter Bereiche/Zonen hat in der SIA 180 [1] das Kapitel 3.6.1.1: "Die Anforderungen an die Luftdichtheit betreffen nicht nur die thermische Gebäudehülle, sondern situationsbedingt auch Trennwände innerhalb eines Gebäudes (Wohnungstrennwände, unterschiedliche Nutzungszonen in Gewerbehäusern usw.). Welche Zone eines Gebäudes den Luftdichtheitsanforderungen genügen müssen, hat der Planer festzulegen."
- 6) Ein Spezialfall bezüglich luftdichter Abgrenzungen/Zonen wird in der Norm SIA 180 [1] in Kapitel 3.3.4 folgendermassen beschrieben und mit einem separaten Grenzwert versehen: "Wände, Böden und Decken, welche die Räume mit Luftverschmutzungsquellen oder Feuchtequellen (z.B. Garagen, Keller, Räume mit hoher Radonbelastung) von den Räumen mit Personenbelegung trennen, müssen möglichst luftdicht sein. Türen und Durchführungen zwischen diesen Zonen

müssen so ausgeführt sein, dass der Luftvolumenstrom bei 50 Pa Druckdifferenz dividiert durch die totale Oberfläche der Trennwände unter 2 m³/(h⋅m²) liegt."

⁷⁾ Zum Luftdichtheits-**Messkonzept**: siehe Kapitel 5.

Die Norm SIA 180 [1] macht unter anderem noch die folgenden Angaben zum Luftdichtheitskonzept:

• Kapitel. 3.6.1.4: "Einzelleckagen dürfen auch bei erfülltem Grenzwert weder zu Schäden am Gebäude noch zur Verminderung der Behaglichkeit führen (z.B. infolge Zugluft, Geruch, Schall). Für sogenannte kritische Bauteile bezüglich Luftleckagen sind die Anforderungen an die Luftdichtheit speziell festzulegen oder es sind Luftdurchlässigkeitsklassen gemäss den Bauteilnormen (SN EN 12152, SN EN 12207, SN EN 12426, SN EN 13125) vorzugeben".

Hinweis der Autoren: Siehe dazu auch die Anhänge der Bauteilnormen SIA 329, SIA 331, SIA 343 etc.

 Kapitel. 3.6.4.2: "Die Messung der Luftdurchlässigkeit ist bei Neubauten in der Regel als vorgezogene Messung am Ende der Ausbauphase durchzuführen, wenn alle wesentlichen Arbeiten, die zur Dichtheit beitragen, abgeschlossen sind. Sie kann aber auch nach Abschluss der Bauarbeiten oder im Nutzungszustand durchgeführt werden."

Verschiedene andere SIA-Normen verweisen bezüglich der Luftdichtheit auf die Norm SIA 180 [1].

Neben der SIA 180 [1], wird das Luftdichtheitskonzept auch in den Bauteilnormen SIA 232/1, 232/2 und der SIA 271 gefordert. Es gilt nach dem Stand der Technik als zwingende Voraussetzung für die Erstellung des Luftdichtheits-Messkonzepts und der erfolgreichen Durchführung der Differenzdruck-Messungen nach Ausführung der Luftdichtheitsebene.

Deswegen sind das Luftdichtheitskonzept und das Luftdichtheits-Messkonzept bei Minergie-Bauten je nach Standard Teil der Zertifizierung und müssen mit den anderen geforderten Unterlagen abgegeben bzw. durchgeführt werden (genaue Aufforderungen siehe Kapitel 3.1).

8.3 Weitere Messmethoden

a) Die Orientierungs-Messung

Oft wird bei einer Gebäudeuntersuchung gefordert, in kürzester Zeit und mit kleinstmöglichem Aufwand (Kosten) einen Hinweis zur Luftdichtheit zu geben. Wird mit einem abgekürzten, vereinfachten Verfahren ein Luftdurchlässigkeits-Messresultat ermittelt - z. B. nur mit Unterdruck, nur als 1-Punkt Messung bei 50 Pa, mit nur abgeschätzter Bezugsgrösse - oder mit anderen von den Normen und dieser Richtlinie abweichenden Messanordnungen so ist das eine "orientierende Messung". Damit verbunden sind auch andere, meist höhere Messunsicherheiten als bei Standard-Messungen. Die korrekte Bezeichnung einer solchen Messung lautet dann "Orientierungsmessung in Anlehnung an Norm", wobei anzufügen ist, worin die Anlehnung / Nichtanlehnung besteht (Lesenswerter Link dazu für Messpraktiker in [12].

Ein Resultat einer "orientierenden Messung" kann wohl mit Grenzwerten verglichen werden, aber es ist keine Beurteilung (erfüllt / nicht erfüllt) im Sinne der Minergie Grenzwerte zulässig.

b) Thermografieaufnahmen

Falls die Zertifizierungsstelle die Aufnahmen vorschreibt, so muss das ganze Gebäude mittels Thermografieaufnahmen auf mögliche Schwachstellen untersucht werden. Die Innentemperatur während den Aufnahmen sollte diejenige des Nutzungszustands sein. Es ist bei solchen Prüfungen davon auszugehen, dass im Sinne aller am Bauprozess Beteiligten Problemstellen weiter untersucht und nachgebessert werden. Es ist ein Bericht zu erstellen und der Zertifizierungsstelle einzureichen.

Anmerkungen zu Thermografie-Interpretationen bei Leckagen: Wird mit einer Infrarotkamera nach Leckagen gesucht, so ist bei der Interpretation Vorsicht geboten! Siehe folgendes Beispiel.

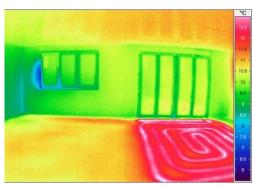


Abbildung 22: Temperaturdifferenz über die Gebäudehülle: ca. 8 Kelvin, Unterdruck: 50 Pa, seit ca. 10 Min. Achtung: Das Fenster links ist dicht! Grund der kühlen, blauen Stelle links: Das Fenster war vor der Messung in Kippstellung (Quelle: Ingenieurbüro Baucheck-Tanner)

Um detaillierte Aussagen zu einer Leckage machen zu können, ist das Infrarot-Subtraktionsverfahren geeignet. Weitere Informationen dazu unter: https://www.thech.ch/de/publikationen/publikationen.

Zu bedenken ist, dass mit Infrarotaufnahmen nicht alle Problemstellen visualisiert werden können. Leckagen, die zu Nachbarzonen führen (z. B. in Wohnungen) sind vielfach nicht erkennbar, weil die Trennwand meist nicht im thermischen Gefälle steht.

Eine allgemeingültige Formel, wie die Leckagen zu beurteilen sind, gibt es nicht. Zu vielschichtig sind die möglichen Ursachen, Auswirkungen, Randbedingungen und das Bewohnerverhalten. Der Forschungsbericht "Fehlstellen in Luftdichtheitsebenen - Handlungsempfehlung für Baupraktiker" (2016) [8] gibt umfassende Hinweise zu diesem Thema.

8.4 Provisorische Abdichtungen bei Lüftungsanlagen

Bei Messungen in Anlehnung an das Verfahren 2 müssen nach aussen führende Kanäle / Rohre von Lüftungsanlagen und Lüftungsöffnungen abgedichtet werden, damit nicht ein grosser Luftvolumenstrom durch diese technischen Anlagen fliesst.

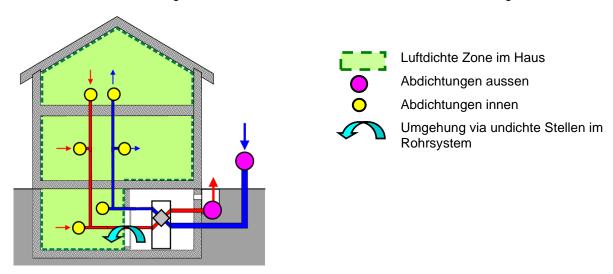
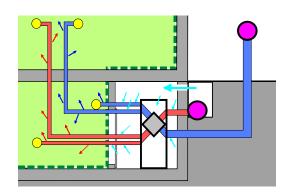



Abbildung 23: Mögliche provisorische Abdichtungen bei Lüftungsanlagen

Leckagen in Lüftungsanlagen

Messungen in Gebäuden mit Lüftungsanlagen sind besonders heikel. Diese Anlagen müssen abgedichtet werden, was meistens auf verschiedene Arten möglich ist. So können die Abdichtungen innen, aussen, im Lüftungsaggregat selbst oder an mehreren Orten ausgeführt werden (vgl. Abbildung 23 +Abbildung 24).

Je nach Dichtheit des Rohrsystems entstehen dabei aber Luft-Umgehungen und die Luftdurchlässigkeitsmessung erfasst trotz Abdichtungen einen grösseren oder kleineren Leckagestrom durch die Kanäle und das Aggregat der Lüftungsanlage. Dieser Leckagestrom hat nichts mit der Gebäudehülle zu tun und sollte in Anlehnung an das Verfahren 2 durch provisorische Abdichtungen möglichst verhindert werden.

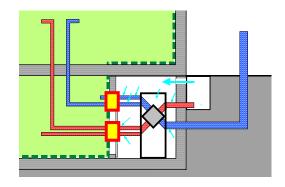


Abbildung 24: Links: Luftumgehungen entstehen durch alle nicht hermetisch abgedichteten Rohrverbindungen.

Rechts: Nur eine totale Abschottung bei der Luftdichtheitsebene (am besten in der Bauphase) verhindert Luftumgehungen.

8.5 Grosse Gebäude

Damit sich das zu prüfende Gebäude / der zu prüfende Gebäudeteil wie eine Zone verhält, muss die Anordnung der Luftfördereinrichtung bzw. -einrichtungen und das Öffnen der Innentüren so erfolgen, dass innen ein gleichmässiger Druck erreicht wird. Druckunterschiede innen sollten möglichst nicht mehr als 10 % der Druckdifferenz zwischen innen und aussen betragen. Kann diese Bedingung nicht eingehalten werden, so ist zu überprüfen, ob das Gebäude / der Gebäudeteil in mehrere kleinere Messzonen aufgeteilt werden kann.

Insbesondere bei grossen und/oder komplexen Gebäuden besteht das Risiko, dass diese Bedingung nicht erfüllt ist. Sie kann überprüft werden, indem während der vorausgehenden Prüfung die Druckunterschiede zwischen verschiedenen Räumen gemessen werden. Alle Verbindungsöffnungen im zu prüfenden Gebäude / Gebäudeteil sind zu öffnen.

Überprüfung der Druckdifferenz **zwischen innen und aussen** in den kritischen Zonen (weitest entfernte Räume / Gebäudeteile):

- Gebäudedruckdifferenz von 50 Pa erzeugen
- Nacheinander die Druckdifferenz zwischen innen und aussen in den kritischen Zonen messen. Eventuell ist ein zweites Druckmessgerät notwendig.

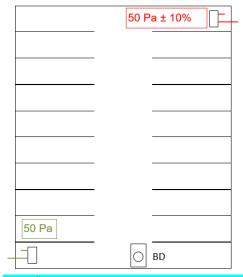


Abbildung 25: Grafik Überprüfung der Druckdifferenz zwischen innen und aussen in den kritischen Zonen

Überprüfung der Druckverteilung innerhalb des Gebäudes:

- Gebäudedruckdifferenz von 50 Pa erzeugen
- Vergleichen des Drucks nahe der Messeinheit mit dem Druck in den kritischen Zonen
- Der Druckunterschied zwischen dem Geschoss mit der Messeinrichtung und der kritischen Zone darf max. 5 Pa betragen (vergleiche Abbildung 26).

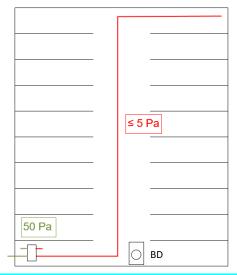


Abbildung 26: Grafik Überprüfung der Druckdifferenz innerhalb des Gebäudes

Falls die Bedingungen nicht eingehalten werden, ist zu überprüfen ob die Messeinrichtung in die druckneutrale Zone verschoben werden kann.

8.6 Weitere Literatur

- Beiblatt zur DIN EN 13829, Ausgabe 4: https://www.flib.de/publikationen/Beiblatt/flib_beiblatt.php; 2015/05
- FLiB Leitfaden Luftdichtheitskonzept: https://www.flib.de/ldk/FLiB_Luftdicht-heitskonzept.pdf?m=1560936730
- FLiB Luftdichtheitskonzept; https://www.flib.de/publikationen/Luftdichtheitskonzept/FLiB-Luftdichtheitskonzept.pdf?m=1560934237
- SN EN 1026; SIA-Norm 331.055; Fenster und Türen Luftdurchlässigkeit Prüfverfahren; 2016
- SN EN 12152; SIA-Norm 329.001; Vorhangfassaden Luftdurchlässigkeit -Leistungsanforderungen und Klassifizierung; 2002
- SN EN 12153; SIA-Norm 329.002; Vorhangfassaden Luftdurchlässigkeit Prüfverfahren; 2000
- SN EN 12207; SIA-Norm 331.301; Fenster und Türen Luftdurchlässigkeit -Klassifizierung; 2016
- SN EN 12426; SIA-Norm 343.103; Tore Luftdurchlässigkeit Klassierung; 2000
- SN EN 12427; SIA-Norm 343.104; Tore Luftdurchlässigkeit Prüfverfahren; 2000
- SN EN 12835; SIA-Norm 342.008; Luftdichte Abschlüsse Prüfung der Luftdurchlässigkeit; 2000
- SN EN 13125; SIA-Norm 342.011; Abschlüsse Zusätzlicher Wärmedurchlasswiderstand - Zuordnung einer Luftdurchlässigkeitsklasse zu einem Produkt; 2001

Literaturverzeichnis

[1]	Norm SIA 180; Wärmeschutz, Feuchteschutz und Raumklima in Gebäuden; 2014/07
[2]	Norm SN EN ISO 9972 (Deutsch); Wärmetechnisches Verhalten von Gebäuden – Bestimmung der Luftdurchlässigkeit von Gebäuden - Differenzdruckverfahren; 2015/09 (SIA 180.206; 2016/02)
[3]	Norm EN 13829 (zurückgezogen); Wärmetechnisches Verhalten von Gebäuden - Bestimmung der Luftdurchlässigkeit von Gebäuden - Differenzdruckverfahren; 2000/11
[4]	Nutzungsreglement Minergie, Version 2020.1; https://www.minergie.ch/de/zertifizie-ren/minergie/ ; Arbeitsdokumente, Grundlagen ; 2020/01
[5]	Produktereglement Minergie, Version 2020.1; https://www.minergie.ch/de/zertifizie-ren/minergie/ ; Arbeitsdokumente, Grundlagen ; 2020/01
[6]	Checkliste Luftdichtheit, Version 2018.1; http://www.minergie.ch/minergie-p.html ; Ar-beitsdokumente, Luftdichtheit ; 2018/01
[7]	Nachweisformular für Luftdichtheitsmessungen – Eine Zone, Version 2020.1, inkl. Leckagen-Abdichtungsliste; https://www.minergie.ch/de/zertifizieren/minergie-p/ ; 2020/resp. Nachweisformular für Luftdichtheitsmessungen – Mehrere Zonen, Version 2020.1, inkl. Leckagen-Abdichtungsliste; https://www.minergie.ch/de/zertifizieren/minergie-p/ ; 2020/1
[8]	Forschungsbericht: Bewertung von Fehlstellen in Luftdichtheitsebenen - Handlungs- empfehlung für Baupraktiker (Flieg, AIBAU, IBP); www.flib.de/publikationen/for-schungsbericht/FLiB_Forschungsbericht_2016.pdf ; 2016/10
[9]	VKF Brandschutznormen und Richtlinien; http://www.praever.ch/DE/BS/VS/Seiten/default.aspx
[10]	Ausschreibungstext für Luftdichtheitsmessungen; https://www.thech.ch/de/blower-door/blower-door
[11]	Nachweisformular Luftdichtheitskonzept Planzeichnung, Version 2018.1; https://www.minergie.ch/de/zertifizieren/minergie ; Arbeitsdokumente, Luftdichtheit; 2018/01
[12]	Normgerecht prüfen - aber mit Verstand (Günter Kalinna); https://fdoku-ment.com/document/normgerecht-pruefen-aber-mit-verstand.html ; 2011/05
[13]	Anwendung der erweiterten Blower-Door-Messmethoden (Monika Hall); http://www.uni-kassel.de/fb6/bpy/de/forschung/veroeffentlichungen/Publikatio-nen00/bp6_00.pdf ; 2000

- [14] Norm SIA 380/1; Heizwärmebedarf; 2016/12
- [15] Nachweisformular Luftdichtheitskonzept Fragebogen, Version 2018.1;
 https://www.minergie.ch/de/zertifizieren/minergie;
 Arbeitsdokumente, Luftdichtheit;
 2018/01
- [16] Norm DIN EN ISO 9972; Wärmetechnisches Verhalten von Gebäuden Bestimmung der Luftdurchlässigkeit von Gebäuden Differenzdruckverfahren (ISO 9972:2015); Deutsche Fassung EN ISO 9972:2015; 2018/12
- [17] Norm SIA 380; Grundlagen für energetische Berechnungen von Gebäuden; 2015/04